Silver solid solution piezoelectrics

Using density functional theory calculations, we investigate the feasibility of using silver on the perovskite A-site in high-performance lead-free piezoelectrics. The calculations show that silver atoms are ferroelectrically active and can off-center by 0.5A. To induce Ag ferroelctric behavior absent in pure AgNbO3 we explore solid solutions of AgNbO3 with well-known simple perovskites PbTiO3, BaZrO3, and BaTiO3. For the AgNbO3–PbTiO3 solid solution, we predict a morphotropic phase boundary near (AgNbO3)3∕8(PbTiO3)5∕8. We find an unusual sequence of compositional phase transitions in AgNbO3–BaZrO3 and AgNbO3–BaTiO3 which are due to the effects of volume expansion in perovskites. For the AgNbO3–BaTiO3 solid solution we find two morphotropic phase boundaries at 12.5% and 37.5% AgNbO3 compositions with favorable piezoeletric properties and indications of high TC.

[1]  A. Grishin,et al.  Ferroelectric silver niobate-tantalate thin films , 2000 .

[2]  Thomas R. Shrout,et al.  Dielectric and Piezoelectric Properties of High Curie Temperature Single Crystals in the Pb(Yb1/2Nb1/2)O3–xPbTiO3 Solid Solution Series , 2002 .

[3]  A. Rappe,et al.  Oxide chemistry and local structure of PbZrxTi1-xO3 studied by density-functional theory supercell calculations , 2004 .

[4]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[5]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[6]  Guo,et al.  Origin of the high piezoelectric response in PbZr1-xTixO3 , 1999, Physical review letters.

[7]  I. Brown 14 - The Bond-Valence Method: An Empirical Approach to Chemical Structure and Bonding , 1981 .

[8]  A. Kania,et al.  Ag1-xNaxNbO3 (ANN) solid solutions: from disordered antiferroelectric AgNbO3 to normal antiferroelectric NaNbO3 , 1999 .

[9]  L Bellaiche,et al.  Ab initio design of perovskite alloys with predetermined properties: the case of Pb(Sc(0.5)Nb(0.5))O(3). , 2001, Physical review letters.

[10]  Jorge Íñiguez,et al.  Ab Initio Design of Perovskite Alloys with Predetermined Properties , 2001 .

[11]  Zhigang Wu,et al.  First-principles calculations of piezoelectricity and polarization rotation inPb(Zr0.5Ti0.5)O3 , 2003 .

[12]  G. Shirane,et al.  Universal phase diagram for high-piezoelectric perovskite systems , 2001, cond-mat/0102457.

[13]  A. Kania Dielectric properties of Ag1-xAxNbO3 (A: K, Na and Li) and AgNb1-xTaxO3 solid solutions in the vicinity of diffuse phase transitions , 2001 .

[14]  J. Íñiguez,et al.  Anomalous properties in ferroelectrics induced by atomic ordering , 2001, Nature.

[15]  Designed nonlocal pseudopotentials for enhanced transferability , 1997, cond-mat/9711163.

[16]  Yet-Ming Chiang,et al.  Lead-free high-strain single-crystal piezoelectrics in the alkaline–bismuth–titanate perovskite family , 1998 .

[17]  Thomas R. Shrout,et al.  New High Temperature Morphotropic Phase Boundary Piezoelectrics Based on Bi(Me)O3–PbTiO3 Ceramics , 2001 .

[18]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[19]  B. Noheda Structure and high-piezoelectricity in lead oxide solid solutions , 2002 .

[20]  Ronald E. Cohen,et al.  Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.

[21]  David Vanderbilt,et al.  First-principles study of (BiScO 3 ) 1-x -(PbTiO 3 ) x piezoelectric alloys , 2003 .

[22]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[23]  A. Rappe,et al.  Quantitative criteria for transferable pseudopotentials in density functional theory , 2001 .

[24]  Anomalous enhancement of tetragonality in PbTiO3 induced by negative pressure , 2003, cond-mat/0306205.