165-GHz Transceiver in SiGe Technology

Two D-band transceivers, with and without amplifiers and static frequency divider, transmitting simultaneously in the 80-GHz and 160-GHz bands, are fabricated in SiGe HBT technology. The transceivers feature an 80-GHz quadrature Colpitts oscillator with differential outputs at 160 GHz, a double-balanced Gilbert-cell mixer, 170-GHz amplifiers and broadband 70-GHz to 180-GHz vertically stacked transformers for single-ended to differential conversion. For the transceiver with amplifiers and static frequency divider, which marks the highest level of integration above 100 GHz in silicon, the peak differential down-conversion gain is -3 dB for RF inputs at 165 GHz. The single-ended, 165-GHz transmitter output generates -3.5 dBm, while the 82.5-GHz differential output power is +2.5 dBm. This transceiver occupies 840 mum times 1365 mum, is biased from 3.3 V, and consumes 0.9 W. Two stand-alone 5-stage amplifiers, centered at 140 GHz and 170 GHz, were also fabricated showing 17 dB and 15 dB gain at 140 GHz and 170 GHz, respectively. The saturated output power of the amplifiers is +1 dBm at 130 GHz and 0 dBm at 165 GHz. All circuits were characterized over temperature up to 125degC. These results demonstrate for the first time the feasibility of SiGe BiCMOS technology for circuits in the 100-180-GHz range.

[1]  S.P. Voinigescu,et al.  Low-Power, Low-Phase Noise SiGe HBT Static Frequency Divider Topologies up to 100 GHz , 2006, 2006 Bipolar/BiCMOS Circuits and Technology Meeting.

[2]  P. Schvan,et al.  Frequency Scaling and Topology Comparison of Millimeter-wave CMOS VCOs , 2006, 2006 IEEE Compound Semiconductor Integrated Circuit Symposium.

[3]  Y. Baeyens,et al.  High-power submicron InP D-HBT push-push oscillators operating up to 215 GHz , 2005, IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC '05..

[4]  P. Chevalier,et al.  300 GHz f/sub max/ self-aligned SiGeC HBT optimized towards CMOS compatiblity , 2005, Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting, 2005..

[5]  S.P. Voinigescu,et al.  30-100-GHz inductors and transformers for millimeter-wave (Bi)CMOS integrated circuits , 2005, IEEE Transactions on Microwave Theory and Techniques.

[6]  D. J. Allstot,et al.  -Boosted Common-Gate LNA and Differential , 2005 .

[7]  M. Aikawa,et al.  A Ka-band quadruple-push oscillator , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[8]  T. Yao,et al.  SiGe BiCMOS 65-GHz BPSK transmitter and 30 to 122 GHz LC-varactor VCOs with up to 21% tuning range , 2004, IEEE Compound Semiconductor Integrated Circuit Symposium, 2004..

[9]  Huei Wang,et al.  Triple-push oscillator approach: theory and experiments , 2001, IEEE J. Solid State Circuits.

[10]  Y. Baeyens,et al.  A monolithic integrated 180 GHz SiGe HBT push-push oscillator , 2005, European Gallium Arsenide and Other Semiconductor Application Symposium, GAAS 2005.

[11]  K. O. Kenneth,et al.  CMOS Millimeter-Wave Signal Sources and Detectors , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[12]  M.A.T. Sanduleanu,et al.  Highly linear, varactor-less, 24GHz IQ oscillator , 2005, 2005 IEEE Radio Frequency integrated Circuits (RFIC) Symposium - Digest of Papers.

[13]  S.P. Voinigescu,et al.  A 77-79-GHz Doppler Radar Transceiver in Silicon , 2007, 2007 IEEE Compound Semiconductor Integrated Circuits Symposium.

[14]  A. Mangan,et al.  De-embedding transmission line measurements for accurate modeling of IC designs , 2006, IEEE Transactions on Electron Devices.

[15]  Sorin P. Voinigescu,et al.  A 95GHz Receiver with Fundamental-Frequency VCO and Static Frequency Divider in 65nm Digital CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[16]  D.J. Allstot,et al.  G/sub m/-boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18-/spl mu/m CMOS , 2005, IEEE Journal of Solid-State Circuits.

[17]  P. Chevalier,et al.  Design and Scaling of W-Band SiGe BiCMOS VCOs , 2007, IEEE Journal of Solid-State Circuits.

[18]  A. Tomkins,et al.  Design and Modeling Considerations for Fully-Integrated Silicon W-Band Transceivers , 2007, 2007 IEEE International Workshop on Radio-Frequency Integration Technology.

[19]  P. Schvan,et al.  A balanced 1.5 GHz voltage controlled oscillator with an integrated LC resonator , 1997, 1997 IEEE International Solids-State Circuits Conference. Digest of Technical Papers.

[20]  Sorin P. Voinigescu,et al.  CMOS SOCs at 100 GHz: System Architectures, Device Characterization, and IC Design Examples , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[21]  Georg Böck,et al.  The Design of Modern Microwave Oscillators for Wireless Applications : Theory and Optimization , 2005 .

[22]  R. G. Freitag,et al.  A unified analysis of MMIC power amplifier stability , 1992, 1992 IEEE Microwave Symposium Digest MTT-S.

[23]  P. Chevalier,et al.  80/160-GHz Transceiver and 140-GHz Amplifier in SiGe Technology , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[24]  T. Kosugi,et al.  120-GHz Tx/Rx Waveguide Modules for 10-Gbit/s Wireless Link System , 2006, 2006 IEEE Compound Semiconductor Integrated Circuit Symposium.

[25]  Barrie Gilbert,et al.  A precise four-quadrant multiplier with subnanosecond response , 1968, IEEE Solid-State Circuits Newsletter.