How good are detection proposals, really?

Current top performing Pascal VOC object detectors employ detection proposals to guide the search for objects thereby avoiding exhaustive sliding window search across images. Despite the popularity of detection proposals, it is unclear which trade-offs are made when using them during object detection. We provide an in depth analysis of ten object proposal methods along with four baselines regarding ground truth annotation recall (on Pascal VOC 2007 and ImageNet 2013), repeatability, and impact on DPM detector performance. Our findings show common weaknesses of existing methods, and provide insights to choose the most adequate method for different settings.

[1]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[2]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[3]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[4]  Antonio Torralba,et al.  Sharing Visual Features for Multiclass and Multiview Object Detection , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[6]  Pablo Arbeláez,et al.  Recognition using regions , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Cordelia Schmid,et al.  Combining efficient object localization and image classification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[8]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[9]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Tinne Tuytelaars,et al.  Dense interest points , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  Thomas Deselaers,et al.  What is an object? , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Cristian Sminchisescu,et al.  Constrained parametric min-cuts for automatic object segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  Derek Hoiem,et al.  Category Independent Object Proposals , 2010, ECCV.

[14]  Koen E. A. van de Sande,et al.  Segmentation as selective search for object recognition , 2011, 2011 International Conference on Computer Vision.

[15]  Matthew B. Blaschko,et al.  Learning a category independent object detection cascade , 2011, 2011 International Conference on Computer Vision.

[16]  Thomas Deselaers,et al.  Measuring the Objectness of Image Windows , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Derek Hoiem,et al.  Diagnosing Error in Object Detectors , 2012, ECCV.

[18]  Cristian Sminchisescu,et al.  CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Piotr Dollár,et al.  Crosstalk Cascades for Frame-Rate Pedestrian Detection , 2012, ECCV.

[20]  Jitendra Malik,et al.  Multi-component Models for Object Detection , 2012, ECCV.

[21]  Jitendra Malik,et al.  Training Deformable Part Models with Decorrelated Features , 2013, 2013 IEEE International Conference on Computer Vision.

[22]  Koen E. A. van de Sande,et al.  Selective Search for Object Recognition , 2013, International Journal of Computer Vision.

[23]  Santiago Manen,et al.  Prime Object Proposals with Randomized Prim's Algorithm , 2013, 2013 IEEE International Conference on Computer Vision.

[24]  Ming Yang,et al.  Regionlets for Generic Object Detection , 2013, 2013 IEEE International Conference on Computer Vision.

[25]  Derek Hoiem,et al.  Category-Independent Object Proposals with Diverse Ranking , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  James M. Rehg,et al.  RIGOR: Reusing Inference in Graph Cuts for Generating Object Regions , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Luc Van Gool,et al.  The Pascal Visual Object Classes Challenge: A Retrospective , 2014, International Journal of Computer Vision.

[29]  Philip H. S. Torr,et al.  BING: Binarized normed gradients for objectness estimation at 300fps , 2014, Computational Visual Media.

[30]  Esa Rahtu,et al.  Generating Object Segmentation Proposals Using Global and Local Search , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Jonathan T. Barron,et al.  Multiscale Combinatorial Grouping , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  C. Lawrence Zitnick,et al.  Edge Boxes: Locating Object Proposals from Edges , 2014, ECCV.

[33]  智一 吉田,et al.  Efficient Graph-Based Image Segmentationを用いた圃場図自動作成手法の検討 , 2014 .

[34]  Takeo Kanade,et al.  Data-Driven Objectness , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.