Spectroscopic study of olivine-bearing rocks and its relevance to the ExoMars rover mission.
暂无分享,去创建一个
F. Poulet | J. Madariaga | S. Werner | F. Rull | J. Medina | M. Veneranda | J. A. Manrique-Martinez | H. Hellevang | C. Lantz | I. Torre-Fdez | K. Castro | A. Krzesińska | G. López-Reyes | G. López‐Reyes
[1] F. Poulet,et al. ExoMars Raman Laser Spectrometer: A Tool for the Potential Recognition of Wet-Target Craters on Mars. , 2020, Astrobiology.
[2] Laura Seoane,et al. Instrument Data Analysis Tool (IDAT) for the Analysis of RLS Data. , 2019 .
[3] S. Werner,et al. Planetary Terrestrial Analogues Library (PTAL) project: Raman data overview , 2019, Journal of Raman Spectroscopy.
[4] S. Werner,et al. Planetary Terrestrial Analogues Library (PTAL) project: Raman data overview , 2019, Journal of Raman Spectroscopy.
[5] F. Poulet,et al. The M3 project: 2 - Global distributions of mafic mineral abundances on Mars , 2019, Icarus.
[6] E. Lalla,et al. Combined vibrational, structural, elemental and Mössbauer spectroscopic analysis of natural phillipsite (zeolite) from historical eruptions in Tenerife, Canary Islands: Implication for Mars , 2019, Vibrational Spectroscopy.
[7] J. Bandfield,et al. A search for minerals associated with serpentinization across Mars using CRISM spectral data , 2018, Icarus.
[8] D. Ming,et al. Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars , 2018, Science Advances.
[9] Le Yu,et al. Mineral composition of the Martian Gale and Nili Fossae regions from Mars Reconnaissance Orbiter CRISM images , 2017, Planetary and Space Science.
[10] Jeffrey R. Johnson,et al. Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations , 2017, Journal of geophysical research. Planets.
[11] Jean-Pierre Bibring,et al. MicrOmega IR: a new infrared hyperspectral imaging microscope or in situ analysis , 2017, International Conference on Space Optics.
[12] J. Madariaga,et al. Geochemical study of the Northwest Africa 6148 Martian meteorite and its terrestrial weathering processes , 2017 .
[13] Richard V. Morris,et al. Mineralogy of an active eolian sediment from the Namib dune, Gale crater, Mars , 2017 .
[14] Guillermo Lopez-Reyes,et al. A method for the automated Raman spectra acquisition , 2017 .
[15] Gianfranco Visentin,et al. Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover , 2017, Astrobiology.
[16] John Robert Brucato,et al. The Mars Organic Molecule Analyzer (MOMA) Instrument: Characterization of Organic Material in Martian Sediments , 2017, Astrobiology.
[17] MedinaJesús,et al. The Raman Laser Spectrometer for the ExoMars Rover Mission to Mars , 2017 .
[18] B. Hynek,et al. Alteration Mineralogy and the Effect of Parent Lithology at Hydrothermal Mars Analog Sites: Initial Results from Hengill and Krafla Volcanoes, Iceland , 2017 .
[19] Roger C. Wiens,et al. Classification of igneous rocks analyzed by ChemCam at Gale crater, Mars , 2017 .
[20] Jeffrey R. Johnson,et al. VNIR multispectral observations of aqueous alteration materials by the Pancams on the Spirit and Opportunity Mars Exploration Rovers , 2016 .
[21] Jesse S. Smith,et al. Ahrensite, γ-Fe 2 SiO 4 , a new shock-metamorphic mineral from the Tissint meteorite: Implications for the Tissint shock event on Mars , 2016 .
[22] J. A. Rodríguez-Losada,et al. Raman-Mössbauer-XRD studies of selected samples from “Los Azulejos” outcrop: A possible analogue for assessing the alteration processes on Mars , 2016 .
[23] S. Murchie,et al. Smectite deposits in Marathon Valley, Endeavour Crater, Mars, identified using CRISM hyperspectral reflectance data , 2016 .
[24] Nicola Doebelin,et al. Profex: a graphical user interface for the Rietveld refinement program BGMN , 2015, Journal of applied crystallography.
[25] Frances Westall,et al. Analysis of the scientific capabilities of the ExoMars Raman Laser Spectrometer instrument , 2013 .
[26] S. Murchie,et al. What the ancient phyllosilicates at Mawrth Vallis can tell us about possible habitability on early Mars , 2013 .
[27] Eduardo Garzanti,et al. Raman spectroscopy in heavy-mineral studies , 2013 .
[28] K. Kuebler. A comparison of the iddingsite alteration products in two terrestrial basalts and the Allan Hills 77005 martian meteorite using Raman spectroscopy and electron microprobe analyses , 2013 .
[29] Jean-Pierre Bibring,et al. Global investigation of olivine on Mars: Insights into crust and mantle compositions , 2013 .
[30] B. Ehlmann,et al. Mineralogy and chemistry of altered Icelandic basalts: Application to clay mineral detection and understanding aqueous environments on Mars , 2012 .
[31] R. Wiens,et al. Textural and modal analyses of picritic basalts with ChemCam Laser-Induced Breakdown Spectroscopy , 2012 .
[32] William H. Farrand,et al. Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater , 2011 .
[33] Christopher P. McKay,et al. Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars , 2010 .
[34] J. Papike,et al. Silicate mineralogy of martian meteorites , 2009 .
[35] Jean-Pierre Bibring,et al. Quantitative compositional analysis of martian mafic regions using the MEx/OMEGA reflectance data. 2. Petrological implications , 2009 .
[36] B. Jolliff,et al. CHARACTERIZATION OF NATURAL FELDSPARS BY RAMAN SPECTROSCOPY FOR FUTURE PLANETARY EXPLORATION , 2008 .
[37] M. Darby Dyar,et al. Characterization of the 1.2 μm M1 pyroxene band: Extracting cooling history from near‐IR spectra of pyroxenes and pyroxene‐dominated rocks , 2008 .
[38] N. Izenberg,et al. Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.
[39] Takashi Mouri,et al. Raman spectroscopic study of olivine-group minerals , 2008 .
[40] Patrick Pinet,et al. Martian surface mineralogy from Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps , 2007 .
[41] B. Jolliff,et al. Extracting olivine (Fo–Fa) compositions from Raman spectral peak positions , 2006 .
[42] Y. Langevin,et al. Olivine and Pyroxene Diversity in the Crust of Mars , 2005, Science.
[43] M. Malin,et al. The Igneous Diversity of Mars: Evidence for Magmatic Evolution Analogous to Earth , 2005 .
[44] R E Arvidson,et al. Basaltic rocks analyzed by the Spirit Rover in Gusev Crater. , 2004, Science.
[45] S. Erard,et al. Nonlinear spectral mixing: Quantitative analysis of laboratory mineral mixtures , 2004 .
[46] Harry Y. McSween,et al. The rocks of Mars, from far and near , 2002 .
[47] R. J. Reid,et al. Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder , 2000 .
[48] Gabriele Arnold,et al. A Model of Spectral Albedo of Particulate Surfaces: Implications for Optical Properties of the Moon , 1999 .
[49] Michael J. Gaffey,et al. Pyroxene spectroscopy revisited - Spectral-compositional correlations and relationship to geothermometry , 1991 .
[50] S. Jakobsson,et al. Petrology of the Western Reykjanes Peninsula, Iceland , 1978 .
[51] John B. Adams,et al. Visible and near‐infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system , 1974 .
[52] C. Pilorget,et al. RLS CALIBRATION TARGET DESIGN TO ALLOW ONBOARD COMBINED SCIENCE BETWEEN RLS AND MICROMEGA INSTRUMENTS ON THE EXOMARS ROVER , 2019 .
[53] William V. Boynton,et al. Wet Chemistry experiments on the 2007 Phoenix Mars Scout Lander mission: Data analysis and results , 2010 .
[54] R. Trautner,et al. Exomars 2018 Rover Pasteur Payload Sample Analysis , 2010 .
[55] J. Sleeman,et al. Olivines, their pseudomorphs and secondary products , 1979 .