Spectroscopic study of olivine-bearing rocks and its relevance to the ExoMars rover mission.

[1]  F. Poulet,et al.  ExoMars Raman Laser Spectrometer: A Tool for the Potential Recognition of Wet-Target Craters on Mars. , 2020, Astrobiology.

[2]  Laura Seoane,et al.  Instrument Data Analysis Tool (IDAT) for the Analysis of RLS Data. , 2019 .

[3]  S. Werner,et al.  Planetary Terrestrial Analogues Library (PTAL) project: Raman data overview , 2019, Journal of Raman Spectroscopy.

[4]  S. Werner,et al.  Planetary Terrestrial Analogues Library (PTAL) project: Raman data overview , 2019, Journal of Raman Spectroscopy.

[5]  F. Poulet,et al.  The M3 project: 2 - Global distributions of mafic mineral abundances on Mars , 2019, Icarus.

[6]  E. Lalla,et al.  Combined vibrational, structural, elemental and Mössbauer spectroscopic analysis of natural phillipsite (zeolite) from historical eruptions in Tenerife, Canary Islands: Implication for Mars , 2019, Vibrational Spectroscopy.

[7]  J. Bandfield,et al.  A search for minerals associated with serpentinization across Mars using CRISM spectral data , 2018, Icarus.

[8]  D. Ming,et al.  Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars , 2018, Science Advances.

[9]  Le Yu,et al.  Mineral composition of the Martian Gale and Nili Fossae regions from Mars Reconnaissance Orbiter CRISM images , 2017, Planetary and Space Science.

[10]  Jeffrey R. Johnson,et al.  Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations , 2017, Journal of geophysical research. Planets.

[11]  Jean-Pierre Bibring,et al.  MicrOmega IR: a new infrared hyperspectral imaging microscope or in situ analysis , 2017, International Conference on Space Optics.

[12]  J. Madariaga,et al.  Geochemical study of the Northwest Africa 6148 Martian meteorite and its terrestrial weathering processes , 2017 .

[13]  Richard V. Morris,et al.  Mineralogy of an active eolian sediment from the Namib dune, Gale crater, Mars , 2017 .

[14]  Guillermo Lopez-Reyes,et al.  A method for the automated Raman spectra acquisition , 2017 .

[15]  Gianfranco Visentin,et al.  Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover , 2017, Astrobiology.

[16]  John Robert Brucato,et al.  The Mars Organic Molecule Analyzer (MOMA) Instrument: Characterization of Organic Material in Martian Sediments , 2017, Astrobiology.

[17]  MedinaJesús,et al.  The Raman Laser Spectrometer for the ExoMars Rover Mission to Mars , 2017 .

[18]  B. Hynek,et al.  Alteration Mineralogy and the Effect of Parent Lithology at Hydrothermal Mars Analog Sites: Initial Results from Hengill and Krafla Volcanoes, Iceland , 2017 .

[19]  Roger C. Wiens,et al.  Classification of igneous rocks analyzed by ChemCam at Gale crater, Mars , 2017 .

[20]  Jeffrey R. Johnson,et al.  VNIR multispectral observations of aqueous alteration materials by the Pancams on the Spirit and Opportunity Mars Exploration Rovers , 2016 .

[21]  Jesse S. Smith,et al.  Ahrensite, γ-Fe 2 SiO 4 , a new shock-metamorphic mineral from the Tissint meteorite: Implications for the Tissint shock event on Mars , 2016 .

[22]  J. A. Rodríguez-Losada,et al.  Raman-Mössbauer-XRD studies of selected samples from “Los Azulejos” outcrop: A possible analogue for assessing the alteration processes on Mars , 2016 .

[23]  S. Murchie,et al.  Smectite deposits in Marathon Valley, Endeavour Crater, Mars, identified using CRISM hyperspectral reflectance data , 2016 .

[24]  Nicola Doebelin,et al.  Profex: a graphical user interface for the Rietveld refinement program BGMN , 2015, Journal of applied crystallography.

[25]  Frances Westall,et al.  Analysis of the scientific capabilities of the ExoMars Raman Laser Spectrometer instrument , 2013 .

[26]  S. Murchie,et al.  What the ancient phyllosilicates at Mawrth Vallis can tell us about possible habitability on early Mars , 2013 .

[27]  Eduardo Garzanti,et al.  Raman spectroscopy in heavy-mineral studies , 2013 .

[28]  K. Kuebler A comparison of the iddingsite alteration products in two terrestrial basalts and the Allan Hills 77005 martian meteorite using Raman spectroscopy and electron microprobe analyses , 2013 .

[29]  Jean-Pierre Bibring,et al.  Global investigation of olivine on Mars: Insights into crust and mantle compositions , 2013 .

[30]  B. Ehlmann,et al.  Mineralogy and chemistry of altered Icelandic basalts: Application to clay mineral detection and understanding aqueous environments on Mars , 2012 .

[31]  R. Wiens,et al.  Textural and modal analyses of picritic basalts with ChemCam Laser-Induced Breakdown Spectroscopy , 2012 .

[32]  William H. Farrand,et al.  Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater , 2011 .

[33]  Christopher P. McKay,et al.  Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars , 2010 .

[34]  J. Papike,et al.  Silicate mineralogy of martian meteorites , 2009 .

[35]  Jean-Pierre Bibring,et al.  Quantitative compositional analysis of martian mafic regions using the MEx/OMEGA reflectance data. 2. Petrological implications , 2009 .

[36]  B. Jolliff,et al.  CHARACTERIZATION OF NATURAL FELDSPARS BY RAMAN SPECTROSCOPY FOR FUTURE PLANETARY EXPLORATION , 2008 .

[37]  M. Darby Dyar,et al.  Characterization of the 1.2 μm M1 pyroxene band: Extracting cooling history from near‐IR spectra of pyroxenes and pyroxene‐dominated rocks , 2008 .

[38]  N. Izenberg,et al.  Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.

[39]  Takashi Mouri,et al.  Raman spectroscopic study of olivine-group minerals , 2008 .

[40]  Patrick Pinet,et al.  Martian surface mineralogy from Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps , 2007 .

[41]  B. Jolliff,et al.  Extracting olivine (Fo–Fa) compositions from Raman spectral peak positions , 2006 .

[42]  Y. Langevin,et al.  Olivine and Pyroxene Diversity in the Crust of Mars , 2005, Science.

[43]  M. Malin,et al.  The Igneous Diversity of Mars: Evidence for Magmatic Evolution Analogous to Earth , 2005 .

[44]  R E Arvidson,et al.  Basaltic rocks analyzed by the Spirit Rover in Gusev Crater. , 2004, Science.

[45]  S. Erard,et al.  Nonlinear spectral mixing: Quantitative analysis of laboratory mineral mixtures , 2004 .

[46]  Harry Y. McSween,et al.  The rocks of Mars, from far and near , 2002 .

[47]  R. J. Reid,et al.  Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder , 2000 .

[48]  Gabriele Arnold,et al.  A Model of Spectral Albedo of Particulate Surfaces: Implications for Optical Properties of the Moon , 1999 .

[49]  Michael J. Gaffey,et al.  Pyroxene spectroscopy revisited - Spectral-compositional correlations and relationship to geothermometry , 1991 .

[50]  S. Jakobsson,et al.  Petrology of the Western Reykjanes Peninsula, Iceland , 1978 .

[51]  John B. Adams,et al.  Visible and near‐infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system , 1974 .

[52]  C. Pilorget,et al.  RLS CALIBRATION TARGET DESIGN TO ALLOW ONBOARD COMBINED SCIENCE BETWEEN RLS AND MICROMEGA INSTRUMENTS ON THE EXOMARS ROVER , 2019 .

[53]  William V. Boynton,et al.  Wet Chemistry experiments on the 2007 Phoenix Mars Scout Lander mission: Data analysis and results , 2010 .

[54]  R. Trautner,et al.  Exomars 2018 Rover Pasteur Payload Sample Analysis , 2010 .

[55]  J. Sleeman,et al.  Olivines, their pseudomorphs and secondary products , 1979 .