A novel computational method for inferring competing endogenous interactions

Posttranscriptional cross talk and communication between genes mediated by microRNA response element (MREs) yield large regulatory competing endogenous RNA (ceRNA) networks. Their inference may improve the understanding of pathologies and shed new light on biological mechanisms. A variety of RNA: messenger RNA, transcribed pseudogenes, noncoding RNA, circular RNA and proteins related to RNA-induced silencing complex complex interacting with RNA transfer and ribosomal RNA have been experimentally proved to be ceRNAs. We retrace the ceRNA hypothesis of posttranscriptional regulation from its original formulation [Salmena L, Poliseno L, Tay Y, et al. Cell 2011;146:353-8] to the most recent experimental and computational validations. We experimentally analyze the methods in literature [Li J-H, Liu S, Zhou H, et al. Nucleic Acids Res 2013;42:D92-7; Sumazin P, Yang X, Chiu H-S, et al. Cell 2011;147:370-81; Sarver AL, Subramanian S. Bioinformation 2012;8:731-3] comparing them with a general machine learning approach, called ceRNA predIction Algorithm, evaluating the performance in predicting novel MRE-based ceRNAs.

[1]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[2]  P. Pandolfi,et al.  Pseudogenes in Human Cancer , 2015, Front. Med..

[3]  Michael Q. Zhang,et al.  MIROR: a method for cell-type specific microRNA occupancy rate prediction. , 2014, Molecular bioSystems.

[4]  Kotb Abdelmohsen,et al.  LncRNA OIP5-AS1/cyrano sponges RNA-binding protein HuR , 2016, Nucleic acids research.

[5]  Kristin P. Bennett,et al.  Support vector machines: hype or hallelujah? , 2000, SKDD.

[6]  Tingting Shao,et al.  The mRNA related ceRNA–ceRNA landscape and significance across 20 major cancer types , 2015, Nucleic acids research.

[7]  Yvonne Tay,et al.  Competing endogenous RNA networks: tying the essential knots for cancer biology and therapeutics , 2015, Journal of Hematology & Oncology.

[8]  Ke Liu,et al.  Linc2GO: a human LincRNA function annotation resource based on ceRNA hypothesis , 2013, Bioinform..

[9]  Doron Betel,et al.  The microRNA.org resource: targets and expression , 2007, Nucleic Acids Res..

[10]  Anjali J. Koppal,et al.  Supplementary data: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites , 2010 .

[11]  Prahlad T. Ram,et al.  Cupid: simultaneous reconstruction of microRNA-target and ceRNA networks , 2015, Genome research.

[12]  R. Place,et al.  Upregulation of Cyclin B1 by miRNA and its implications in cancer , 2011, Nucleic acids research.

[13]  Jørgen Kjems,et al.  miRNA‐dependent gene silencing involving Ago2‐mediated cleavage of a circular antisense RNA , 2011, The EMBO journal.

[14]  Thomas M. Keane,et al.  The BRAF Pseudogene Functions as a Competitive Endogenous RNA and Induces Lymphoma In Vivo , 2015, Cell.

[15]  Nikolaus Rajewsky,et al.  Competition between target sites of regulators shapes post-transcriptional gene regulation , 2014, Nature Reviews Genetics.

[16]  Peng Wang,et al.  miRSponge: a manually curated database for experimentally supported miRNA sponges and ceRNAs , 2015, Database J. Biol. Databases Curation.

[17]  Xuerui Yang,et al.  An Extensive MicroRNA-Mediated Network of RNA-RNA Interactions Regulates Established Oncogenic Pathways in Glioblastoma , 2011, Cell.

[18]  E. Punch,et al.  Pseudogenes: pseudo-functional or key regulators in health and disease? , 2011, RNA.

[19]  M. Zavolan,et al.  Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation , 2013, Genome research.

[20]  F. He,et al.  Long noncoding RNA BC032469, a novel competing endogenous RNA, upregulates hTERT expression by sponging miR-1207-5p and promotes proliferation in gastric cancer , 2016, Oncogene.

[21]  Junpeng Zhang,et al.  Computational methods for identifying miRNA sponge interactions , 2016, Briefings Bioinform..

[22]  Hui Zhou,et al.  starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data , 2013, Nucleic Acids Res..

[23]  Peter Goodfellow,et al.  Circular transcripts of the testis-determining gene Sry in adult mouse testis , 1993, Cell.

[24]  Yufei Huang,et al.  A Bayesian decision fusion approach for microRNA target prediction , 2010, BCB '10.

[25]  J. Kjems,et al.  Circular RNA and miR-7 in cancer. , 2013, Cancer research.

[26]  J. Pagano,et al.  Tumor Viruses and Cell Signaling Pathways: Deubiquitination versus Ubiquitination , 2004, Molecular and Cellular Biology.

[27]  Vikram Agarwal,et al.  Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. , 2014, Molecular cell.

[28]  J. Kjems,et al.  Natural RNA circles function as efficient microRNA sponges , 2013, Nature.

[29]  H. Lodish,et al.  Regulation of mammalian cell differentiation by long non‐coding RNAs , 2012, EMBO reports.

[30]  Riccardo Zecchina,et al.  Modelling Competing Endogenous RNA Networks , 2013, PloS one.

[31]  M. Dinger,et al.  Endogenous microRNA sponges: evidence and controversy , 2016, Nature Reviews Genetics.

[32]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[33]  P. Pandolfi,et al.  Oncogenic Role of Fusion-circRNAs Derived from Cancer-Associated Chromosomal Translocations , 2016, Cell.

[34]  Hsien-Da Huang,et al.  miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions , 2013, Nucleic Acids Res..

[35]  M. Todesco,et al.  Target mimicry provides a new mechanism for regulation of microRNA activity , 2007, Nature Genetics.

[36]  Grace X. Y. Zheng,et al.  MicroRNAs can generate thresholds in target gene expression , 2011, Nature Genetics.

[37]  R. Place,et al.  MicroRNA-373 induces expression of genes with complementary promoter sequences , 2008, Proceedings of the National Academy of Sciences.

[38]  Beth Israel,et al.  Decision letter: Replication Study: A coding-independent function of gene and pseudogene mRNAs regulates tumour biology , 2010 .

[39]  Ferdinando Di Cunto,et al.  Coding-Independent Regulation of the Tumor Suppressor PTEN by Competing Endogenous mRNAs , 2011, Cell.

[40]  D. Cacchiarelli,et al.  A Long Noncoding RNA Controls Muscle Differentiation by Functioning as a Competing Endogenous RNA , 2011, Cell.

[41]  Helga Thorvaldsdóttir,et al.  Molecular signatures database (MSigDB) 3.0 , 2011, Bioinform..

[42]  Mingming Jia,et al.  COSMIC: exploring the world's knowledge of somatic mutations in human cancer , 2014, Nucleic Acids Res..

[43]  Salvatore Alaimo,et al.  DT-Web: a web-based application for drug-target interaction and drug combination prediction through domain-tuned network-based inference , 2015, BMC Systems Biology.

[44]  M. Zavolan,et al.  A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets , 2013, Nature Methods.

[45]  Shaoli Das,et al.  HumanViCe: host ceRNA network in virus infected cells in human , 2014, Front. Genet..

[46]  Lorenzo Farina,et al.  Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer , 2014, BMC Systems Biology.

[47]  S. Hayward,et al.  Viral interactions with the Notch pathway. , 2004, Seminars in cancer biology.

[48]  Sebastian D. Mackowiak,et al.  Circular RNAs are a large class of animal RNAs with regulatory potency , 2013, Nature.

[49]  Cole Trapnell,et al.  Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. , 2011, Genes & development.

[50]  Dong Yue,et al.  Improving performance of mammalian microRNA target prediction , 2010, BMC Bioinformatics.

[51]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[52]  Yufei Huang,et al.  A new algorithm for predicting competing endogenous rnas , 2012, Proceedings 2012 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS).

[53]  Phillip A Sharp,et al.  Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. , 2014, Molecular cell.

[54]  Shaoli Das,et al.  lnCeDB: Database of Human Long Noncoding RNA Acting as Competing Endogenous RNA , 2014, PloS one.

[55]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[56]  Bernhard Schölkopf,et al.  New Support Vector Algorithms , 2000, Neural Computation.

[57]  Andreas Heger,et al.  Evidence for conserved post-transcriptional roles of unitary pseudogenes and for frequent bifunctionality of mRNAs , 2012, Genome Biology.

[58]  Salvatore Alaimo,et al.  Drug–target interaction prediction through domain-tuned network-based inference , 2013, Bioinform..

[59]  Fabio Pastorino,et al.  Abstract 5609: Bortezomib enhanced cytotoxic effects of novel sTRAIL-targeted nanocarriers against neuroectodermal tumors . , 2013 .

[60]  P. Pandolfi,et al.  A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? , 2011, Cell.

[61]  Hervé Seitz,et al.  Redefining MicroRNA Targets , 2009, Current Biology.

[62]  Subbaya Subramanian,et al.  Competing endogenous RNA database , 2012, Bioinformation.

[63]  P. Pandolfi,et al.  The multilayered complexity of ceRNA crosstalk and competition , 2014, Nature.

[64]  D. Tollervey,et al.  Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding , 2013, Cell.

[65]  Michael Q. Zhang,et al.  Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit , 2015, Proceedings of the National Academy of Sciences.

[66]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[67]  J. Steitz,et al.  Down-Regulation of a Host MicroRNA by a Herpesvirus saimiri Noncoding RNA , 2010, Science.

[68]  Tongbin Li,et al.  miRecords: an integrated resource for microRNA–target interactions , 2008, Nucleic Acids Res..

[69]  R. Zecchina,et al.  Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments , 2013, Proceedings of the National Academy of Sciences.