High retentivity and selectivity for polycyclic aromatic hydrocarbons with poly(4-vinylpyridine)-grafted silica in normal-phase high-performance liquid chromatography.

[1]  A. Modelli,et al.  Rapid quantitative prediction of ionization energies and electron affinities of polycyclic aromatic hydrocarbons , 2007 .

[2]  Y. Kazakevich High-performance liquid chromatography retention mechanisms and their mathematical descriptions. , 2006, Journal of chromatography. A.

[3]  M. Takafuji,et al.  Poly(4-vinylpyridine) as a reagent with silanol-masking effect for silica and its specific selectivity for PAHs and dinitropyrenes in a reversed phase , 2005 .

[4]  M. Takafuji,et al.  Molecular-length and chiral discriminations by beta-structural poly(L-alanine) on silica. , 2005, Journal of chromatography. A.

[5]  W. Lindner,et al.  Investigations on the chromatographic behavior of hybrid reversed-phase materials containing electron donor-acceptor systems. I. Contribution of sulfur-aromatic interactions. , 2004, Journal of chromatography. A.

[6]  J. Haginaka,et al.  HPLC retention behavior of poly-aromatic-hydrocarbons on aminopropyl silica gels modified with Cu(II)- and Ni(II)-phthalocyanine derivatives in non-polar eluent. , 2004, Chemical & pharmaceutical bulletin.

[7]  M. Takafuji,et al.  Poly(4‐Vinylpyridine) as Novel Organic Phase for RP‐HPLC. Unique Selectivity for Polycyclic Aromatic Hydrocarbons , 2003 .

[8]  T. Adachi,et al.  Use of synthetic adsorbents in preparative normal-phase liquid chromatography. , 2003, Journal of chromatography. A.

[9]  P. Jandera Gradient elution in normal-phase high-performance liquid chromatographic systems. , 2002, Journal of chromatography. A.

[10]  H. Kažoka Analysis of purines and pyrimidines by mixed partition-adsorption normal-phase high-performance liquid chromatography. , 2002, Journal of chromatography. A.

[11]  T. Sagawa,et al.  Enhanced Molecular-Shape Selectivity for Polyaromatic Hydrocarbons through Isotropic-to-Crystalline Phase Transition of Poly(octadecyl acrylate) , 2001 .

[12]  A. Hawrył,et al.  Comparison of chromatographic properties of cyanopropyl-, diol- and aminopropyl- polar-bonded stationary phases by the retention of model compounds in normal-phase liquid chromatography systems. , 2001, Journal of chromatography. A.

[13]  S. Wise,et al.  Shape selectivity for constrained solutes in reversed-phase liquid chromatography. , 1999, Analytical chemistry.

[14]  N. Ma,et al.  Cation–aromatic π interaction in the gas phase: an experimental study on relative silver (I) ion affinities of polyaromatic hydrocarbons , 1998 .

[15]  R. Guy,et al.  The driving force for solute retention in electron donor-acceptor chromatography: Electrostatic versus charge-transfer interactions , 1998 .

[16]  K. Jinno,et al.  Characterisation of important interactions controlling retention behaviour of analytes in reversed-phase high-performance liquid chromatography , 1998 .

[17]  R. Guy,et al.  Quadrupolar effects on the retention of aromatic hydrocarbons in normal phase liquid chromatography , 1997 .

[18]  J. Fréchet,et al.  Monodisperse hydrolyzed poly(glycidyl methacrylate-co-ethylene dimethacrylate) beads as a stationary phase for normal-phase HPLC. , 1997, Analytical chemistry.

[19]  R. J. Boyd,et al.  Calculation of Quadrupole Moments of Polycyclic Aromatic Hydrocarbons: Applications to Chromatography , 1997 .

[20]  Y. L. Chen,et al.  Molecular shape recognition of polycyclic aromatic hydrocarbons with various alkyl diphenyl bonded phases in microcolumn liquid chromatography , 1997 .

[21]  M. Meyerhoff,et al.  High-performance liquid chromatography of C60, C70, and higher fullerenes on tetraphenylporphyrin-silica stationary phases using strong mobile phase solvents , 1995 .

[22]  W. Cooper,et al.  Retention mechanisms of bonded-phase liquid chromatography. , 1994, Analytical chemistry.

[23]  M. Meyerhoff,et al.  Shape-selective separation of polycyclic aromatic hydrocarbons by reversed-phase liquid chromatography on tetraphenylporphyrin-based stationary phases. , 1993, Journal of chromatography.

[24]  S. Wise,et al.  Shape discrimination in liquid chromatography using charge-transfer phases , 1991 .

[25]  H. Cantow,et al.  Structure analysis of conductive polymer systems: Poly-4-vinylpyridine and poly(butadiene-b-4-vinylpyridine) with 7,7′,8,8′-tetracyanoquinodimethane , 1990 .

[26]  W. R. Biggs,et al.  A Comparison of Dicoronylene and Octadecylsilica Stationary Phases for Separation of Polycyclic Aromatic Hydrocarbons by Microcolumn Liquid Chromatography , 1990 .

[27]  J. Dorsey,et al.  Retention mechanisms in reversed-phase liquid chromatography. Stationary-phase bonding density and partitioning. , 1989, Analytical chemistry.

[28]  C. Östman,et al.  Retention characteristics of alkylated polycyclic aromatic hydrocarbons in normal phase liquid chromatography , 1988 .

[29]  K. Jinno,et al.  Correlation between retention data of polycyclic aromatic hydrocarbons and several descriptors in supercritical-fluid chromatography , 1986 .

[30]  H. Lamparczyk The role of electric interaction in the retention index cencept. Universal interaction indices for GLC, HPLC and TLC , 1985 .

[31]  K. Kawasaki,et al.  Effect of the chain length of chemically bonded phases on the retention of substituted benzene derivatives in reversed-phase liquid chromatography , 1984 .

[32]  S. Wise,et al.  Synthesis and characterization of polymeric C18 stationary phases for liquid chromatography , 1984 .

[33]  K. Jinno,et al.  Correlation between the retention data of polycyclic aromatic hydrocarbons and several descriptors in reversed-phase HPLC , 1983 .

[34]  S. Wise,et al.  Chemically-bonded aminosilane stationary phase for the high-performance liquid chromatographic separation of polynuclear aromatic compounds , 1977 .