The “Procellarum KREEP Terrane”: Implications for mare volcanism and lunar evolution

Geophysical, remote-sensing, and sample data demonstrate that the Procellarum and Imbrium regions of the Moon make up a unique geochemical crustal province (here dubbed the Procellarum KREEP Terrane). Geochemical studies of Imbrium's ejecta and the crustal structure of the Imbrium and Serenitatis basins both suggest that a large portion of the lunar crust in this locale is composed of a material similar in composition to Apollo 15 KREEP basalt. KREEP basalt has about 300 times more uranium and thorium than chondrites, so this implies that a large portion of Moon's heat-producing elements is located within this single crustal province. The spatial distribution of mare volcanism closely parallels the confines of the Procellarum KREEP Terrane and this suggests a causal relationship between the two phenomena. We have modeled the Moon's thermal evolution using a simple thermal conduction model and show that as a result of the high abundance of heat-producing elements that are found in the Procellarum KREEP Terrane, partial melting of the underlying mantle is an inevitable outcome. Specifically, by placing a 10-km KREEP basalt layer at the base of the crust there, our model predicts that mare volcanism should span most of the Moon's history and that the depth of melting should increase with time to a maximum depth of about 600 km. We suggest that the 500-km seismic discontinuity that is observed in the Apollo seismic data may represent this maximum depth of melting. Our model also predicts that the KREEP basalt layer should remain partially molten for a few billion years. Thus the Imbrium impact event most likely excavated into a partially molten KREEP basalt magma chamber. We postulate that the KREEP basalt composition is a by-product of mixing urKREEP with shallow partial melts of the underlying mantle. Since Mg-suite rocks are likely derived from crystallizing KREEP basalt, the provenance of these plutonic rocks is likely to be unique to this region of the Moon.

[1]  G. Ryder The chemical components of highlands breccias , 1979 .

[2]  P. Spudis,et al.  Composition of orientale basin deposits and implications for the lunar basin‐forming process , 1984 .

[3]  R. Reedy,et al.  Surface chemistry of selected lunar regions , 1976 .

[4]  N. R. Goins,et al.  Lunar Seismology: the Internal Structure of the Moon. Ph.D. Thesis , 1978 .

[5]  David E. Smith,et al.  The Clementine Mission to the Moon: Scientific Overview , 1994, Science.

[6]  G. Schubert,et al.  Subsolidus convective cooling histories of terrestrial planets , 1979 .

[7]  John A. Wood,et al.  Lunar anorthosites and a geophysical model of the moon , 1970 .

[8]  R. Phillips,et al.  Lunar Multiring Basins and the Cratering Process , 1999 .

[9]  P. Warren The origin of pristine KREEP - Effects of mixing between UrKREEP and the magmas parental to the Mg-rich cumulates , 1988 .

[10]  J. Head,et al.  Lunar mare volcanism: Stratigraphy, eruption conditions, and the evolution of secondary crusts , 1992 .

[11]  M. Nafi Toksöz,et al.  Structure of the Moon , 1974 .

[12]  D. A. Papanastassiou,et al.  Isotopic evidence for a terminal lunar cataclysm , 1974 .

[13]  A. G. W. Cameron,et al.  The origin of the moon and the single-impact hypothesis III. , 1991 .

[14]  J. Longhi Experimental petrology and petrogenesis of mare volcanics , 1992 .

[15]  H. Wiesmann,et al.  Rb-Sr and Sm-Nd chronology of an Apollo 17 KREEP basalt , 1992 .

[16]  A. E. Ringwood,et al.  Further limits on the bulk composition of the moon , 1976 .

[17]  R. Korotev Concentrations of radioactive elements in lunar materials , 1998 .

[18]  S. Solomon,et al.  Magma Oceanography: 1. Thermal Evolution , 1977 .

[19]  E. Parmentier,et al.  Numerical experiments on thermal convection in a chemically stratified viscous fluid heated from below: implications for a model of lunar evolution , 1998 .

[20]  O. James,et al.  Subdivision of the Mg‐suite noritic rocks into Mg‐gabbronorites and Mg‐norites , 1983 .

[21]  H. Melosh Impact Cratering: A Geologic Process , 1986 .

[22]  Richard E. Lingenfelter,et al.  Analysis and interpretation of lunar laser altimetry. , 1972 .

[23]  O. James Rocks of the early lunar crust , 1980 .

[24]  Paul H. Warren,et al.  THE MAGMA OCEAN CONCEPT AND LUNAR EVOLUTION , 1985 .

[25]  R. Radocinski,et al.  Thorium concentrations in the lunar surface. I - Regional values and crustal content , 1977 .

[26]  David E. Smith,et al.  The lunar crust: Global structure and signature of major basins , 1996 .

[27]  G. J. Taylor,et al.  Lunar composition: A geophysical and petrological synthesis , 1988 .

[28]  S. Keihm,et al.  The Revised Lunar Heat Flow Values , 1976 .

[29]  P. H. Warren,et al.  Anorthosite assimilation and the origin of the Mg/Fe‐related bimodality of pristine moon rocks: Support for the magmasphere hypothesis , 1986 .

[30]  Jafar Arkani-Hamed,et al.  Lunar mascons revisited , 1997 .

[31]  P. Spudis,et al.  Beginning and end of lunar mare volcanism , 1983, Nature.

[32]  David E. Smith,et al.  Topography of the Moon from the Clementine lidar , 1997 .

[33]  D. Wise,et al.  Mascons as structural relief on a lunar Moho. , 1970 .

[34]  R. Phillips,et al.  Lunar Bouguer gravity anomalies: Imbrian age craters. , 1978 .

[35]  L. Haskin The Imbrium impact event and the thorium distribution at the lunar highlands surface , 1998 .

[36]  John H. Jones,et al.  Geophysical constraints on lunar bulk composition and structure - A reassessment , 1987 .

[37]  P. W. Gast,et al.  Chemical composition and origin of nonmare lunar basalts , 1971 .

[38]  J. Wasson,et al.  Contribution of the mantle to the lunar asymmetry , 1980 .

[39]  G. Schubert,et al.  Whole planet cooling and the radiogenic heat source contents of the Earth and Moon , 1980 .

[40]  P. Cassen,et al.  Convection and lunar thermal history , 1979 .

[41]  L. Taylor,et al.  Pre-4.2 AE mare-basalt volcanism in the lunar highlands , 1983 .

[42]  P. A. Baedecker,et al.  Provenance of Apollo 12 KREEP. , 1972 .

[43]  S. Ida,et al.  Lunar accretion from an impact-generated disk , 1997, Nature.

[44]  S. Solomon Mare volcanism and lunar crustal structure , 1975 .

[45]  D. Mckay,et al.  Apollo 12 soil and breccia , 1971 .

[46]  R. Reedy,et al.  Lunar Surface Radioactivity: Preliminary Results of the Apollo 15 and Apollo 16 Gamma-Ray Spectrometer Experiments , 1973, Science.

[47]  D. Turcotte,et al.  Parameterized convection within the moon and the terrestrial planets , 1979 .

[48]  J. Head,et al.  The deep structure of lunar basins: Implications for basin formation and modification , 1985 .

[49]  A. Binder,et al.  Lunar Prospector: overview. , 1998, Science.

[50]  F. Spera Lunar magma transport phenomena , 1992 .

[51]  W. Ridley,et al.  Major Element Composition of Glasses in Three Apollo 15 Soils , 1972 .

[52]  P. Warren,et al.  Early lunar petrogenesis, oceanic and extraoceanic , 1980 .

[53]  R. Kirk,et al.  The competition between thermal contraction and differentiation in the stress history of the Moon , 1989 .

[54]  K. Rasmussen,et al.  Megaregolith insulation, internal temperatures, and bulk uranium content of the moon , 1987 .

[55]  David J. Stevenson,et al.  Origin of the Moon-The Collision Hypothesis , 1987 .

[56]  A. Boudreau,et al.  Complex igneous processes and the formation of the primitive lunar crustal rocks , 1979 .

[57]  De Hon Thickness of the western mare basalts. , 1979 .

[58]  L. Taylor,et al.  Processes involved in the formation of magnesian‐suite plutonic rocks from the highlands of the Earth's Moon , 1995 .

[59]  L. Nyquist,et al.  THE ISOTOPIC RECORD OF LUNAR VOLCANISM , 1992 .

[60]  L. Taylor,et al.  Chronology and petrogenesis of the lunar highlands alkali suite: Cumulates from KREEP basalt crystallization , 1995 .

[61]  D. Mckay,et al.  Mineralogy, chemistry, and origin of the KREEP component in soil samples from the Ocean of Storms , 1971 .

[62]  G. Ryder Coincidence in Time of the Imbrium Basin Impact and Apollo 15 KREEP Volcanic Flows: The Case for Impact-Induced Melting , 1994 .

[63]  J. J. Gillis,et al.  Major lunar crustal terranes: Surface expressions and crust‐mantle origins , 1999 .

[64]  David E. Smith,et al.  The Shape and Internal Structure of the Moon from the Clementine Mission , 1994, Science.

[65]  S. Taylor,et al.  The geochemical evolution of the moon , 1974 .

[66]  R. Korotev,et al.  The case for an Imbrium origin of the Apollo thorium‐rich impact‐melt breccias , 1998 .

[67]  Yosio Nakamura,et al.  Apollo Lunar Seismic Experiment - Final Summary , 1982 .

[68]  M. Norman,et al.  Geochemical constraints on the igneous evolution of the lunar crust. , 1980 .

[69]  S. K. Croft,et al.  Cratering flow fields - Implications for the excavation and transient expansion stages of crater formation , 1980 .

[70]  P. C. Hess,et al.  A model for the thermal and chemical evolution of the Moon's interior: implications for the onset of mare volcanism , 1995 .

[71]  P. Spudis Composition and origin of the Apennine Bench Formation , 1978 .

[72]  J. Longhi A model of early lunar differentiation , 1980 .

[73]  L. Taylor,et al.  Petrologic constraints on the origin of the Moon , 1984 .

[74]  David E. Smith,et al.  Topographic-Compositional Units on the Moon and the Early Evolution of the Lunar Crust , 1994, Science.

[75]  Provenance of KREEP and the exotic component: elemental and isotopic studies of grain size fractions in lunar soils. , 1974 .

[76]  Roger J. Phillips,et al.  Potential anomalies on a sphere: Applications to the thickness of the lunar crust , 1998 .

[77]  R. Korotev The great lunar hot spot and the composition and origin of the Apollo mafic (“LKFM”) impact‐melt breccias , 2000 .

[78]  Paul H. Warren,et al.  The origin of KREEP , 1979 .

[79]  J. Delano Buoyancy-driven melt segregation in the earth's moon. I - Numerical results , 1989 .

[80]  S. Maurice,et al.  Global elemental maps of the moon: the Lunar Prospector gamma-Ray spectrometer. , 1998, Science.

[81]  H. Wiesmann,et al.  The composition and derivation of Apollo 12 soils , 1971 .

[82]  Hood,et al.  Improved gravity field of the moon from lunar prospector , 1998, Science.