A finite point method for elasticity problems

Abstract The basis of the finite point method (FPM) for the fully meshless solution of elasticity problems in structural mechanics is described. A stabilization technique based on a finite calculus procedure is used to improve the quality of the numerical solution. The efficiency and accuracy of the stabilized FPM in the meshless analysis of simple linear elastic structural problems is shown in some examples of applications.

[1]  Robert Kao,et al.  A General Finite Difference Method for Arbitrary Meshes , 1975 .

[2]  Eugenio Oñate,et al.  A finite point method for incompressible flow problems , 2000 .

[3]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[4]  L. Libersky,et al.  Smoothed Particle Hydrodynamics: Some recent improvements and applications , 1996 .

[5]  T. Liszka,et al.  The finite difference method at arbitrary irregular grids and its application in applied mechanics , 1980 .

[6]  Ted Belytschko,et al.  An introduction to programming the meshless Element F reeGalerkin method , 1998 .

[7]  E. Oñate,et al.  A FINITE POINT METHOD IN COMPUTATIONAL MECHANICS. APPLICATIONS TO CONVECTIVE TRANSPORT AND FLUID FLOW , 1996 .

[8]  Eugenio Oñate,et al.  Derivation of stabilized equations for numerical solution of advective-diffusive transport and fluid flow problems , 1998 .

[9]  Eugenio Oñate,et al.  A mesh-free finite point method for advective-diffusive transport and fluid flow problems , 1998 .

[10]  E. Oñate,et al.  An alpha-adaptive approach for stabilized finite element solution of advective-diffusive problems with sharp gradients , 1998 .

[11]  T. Belytschko,et al.  Nodal integration of the element-free Galerkin method , 1996 .

[12]  Eugenio Oñate,et al.  COMPUTATION OF THE STABILIZATION PARAMETER FOR THE FINITE ELEMENT SOLUTION OF ADVECTIVE-DIFFUSIVE PROBLEMS , 1997 .

[13]  K. Bathe,et al.  The method of finite spheres , 2000 .

[14]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[15]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[16]  J. Bonet,et al.  Finite increment gradient stabilization of point integrated meshless methods for elliptic equations , 2000 .

[17]  Eugenio Oñate,et al.  A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation , 2000 .

[18]  Hyun Gyu Kim,et al.  A critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) methods , 1999 .

[19]  E. Oñate,et al.  A stabilized finite point method for analysis of fluid mechanics problems , 1996 .

[20]  Eugenio Oñate,et al.  A general procedure for deriving stabilized space–time finite element methods for advective–diffusive problems , 1999 .

[21]  S. Timoshenko,et al.  Theory of Elasticity (3rd ed.) , 1970 .

[22]  P. Villon,et al.  GENERALIZING THE FEM: DIFFUSE APPROXIMATION AND DIFFUSE ELEMENTS , 1992 .

[23]  Ted Belytschko,et al.  Overview and applications of the reproducing Kernel Particle methods , 1996 .

[24]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .