A review of pseudospectral optimal control: From theory to flight

Abstract The home space for optimal control is a Sobolev space. The home space for pseudospectral theory is also a Sobolev space. It thus seems natural to combine pseudospectral theory with optimal control theory and construct “pseudospectral optimal control theory”, a term coined by Ross. In this paper, we review key theoretical results in pseudospectral optimal control that have proven to be critical for a successful flight. Implementation details of flight demonstrations onboard NASA spacecraft are discussed along with emerging trends and techniques in both theory and practice. The 2011 launch of pseudospectral optimal control in embedded platforms is changing the way in which we see solutions to challenging control problems in aerospace and autonomous systems.

[1]  Wei Kang,et al.  Pseudospectral Optimal Control and Its Convergence Theorems , 2008 .

[2]  Qi Gong,et al.  Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control , 2008, Comput. Optim. Appl..

[3]  Fariba Fahroo On Discrete-Time Optimality Conditions for Pseudospectral Methods, AIAA (2006; Keystone, Colorado) , 2006 .

[4]  Qi Gong,et al.  Pseudospectral Optimal Control for Military and Industrial Applications , 2007, 2007 46th IEEE Conference on Decision and Control.

[5]  I. Michael Ross Hybrid Optimal Control Framework for Mission Planning , 2005, Journal of Guidance, Control, and Dynamics.

[6]  Wei Kang,et al.  Zero-propellant maneuver guidance , 2009, IEEE Control Systems.

[7]  I. Michael Ross,et al.  Convergence of the Costates Does Not Imply Convergence of the Control , 2008, Journal of Guidance, Control, and Dynamics.

[8]  M A Hurni,et al.  A Pseudospectral optimal motion planner for autonomous unmanned vehicles , 2010, Proceedings of the 2010 American Control Conference.

[9]  Paul Williams,et al.  Three-dimensional aircraft terrain-following via real-time optimal control , 2007 .

[10]  Qi Gong,et al.  Low-Thrust, High-Accuracy Trajectory Optimization , 2007, Journal of Guidance, Control, and Dynamics.

[11]  Gamal N. Elnagar,et al.  Pseudospectral Chebyshev Optimal Control of Constrained Nonlinear Dynamical Systems , 1998, Comput. Optim. Appl..

[12]  I. Michael Ross,et al.  A unified computational framework for real-time optimal control , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[13]  I. Michael Ross,et al.  Costate Estimation by a Legendre Pseudospectral Method , 1998 .

[14]  Wei Kang,et al.  Convergence of Pseudospectral Methods for constrained Nonlinear Optimal Control problems, IEEE (44th; December 12-14; Seville, Spain) , 2005 .

[15]  Michael A. Hurni,et al.  An Info-Centric Trajectory Planner for Unmanned Ground Vehicles , 2010 .

[16]  Qi Gong,et al.  PSEUDOSPECTRAL OPTIMAL CONTROL ON ARBITRARY GRIDS , 2009 .

[17]  I. Michael Ross,et al.  Spectral Algorithm for Pseudospectral Methods in Optimal Control , 2008, Journal of Guidance, Control, and Dynamics.

[18]  I. Michael Ross,et al.  Issues in the real-time computation of optimal control , 2006, Math. Comput. Model..

[19]  I. Michael Ross,et al.  On the convergence of nonlinear optimal control using pseudospectral methods for feedback linearizable systems , 2007 .

[20]  P. Williams Jacobi pseudospectral method for solving optimal control problems , 2004 .

[21]  Ping Lu,et al.  Closed-loop endoatmospheric ascent guidance , 2003 .

[22]  Masanori Harada,et al.  Optimal Trajectory of a Glider in Ground Effect and Wind Shear , 2005 .

[23]  G. Margulies Geometric Theory of Single-Gimbal Control Moment Gyro System , 1978 .

[24]  Sagar Bhatt,et al.  ZERO PROPELLANT MANEUVER TM FLIGHT RESULTS FOR 180 ° ISS ROTATION , 2007 .

[25]  Qi Gong,et al.  Guess-Free Trajectory Optimization , 2008 .

[26]  Wei Kang,et al.  Convergence of Pseudospectral Methods for a Class of Discontinuous Optimal Control , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[27]  W. Kang Rate of convergence for the Legendre pseudospectral optimal control of feedback linearizable systems , 2010 .

[28]  William E. Wiesel,et al.  Large Time Scale Optimal Control of an Electrodynamic Tether Satellite , 2008 .

[29]  I. Michael Ross,et al.  Minimum-Time Reorientation of a Rigid Body , 2010 .

[30]  Qi Gong,et al.  A pseudospectral method for the optimal control of constrained feedback linearizable systems , 2006, IEEE Transactions on Automatic Control.

[31]  Jr-Shin Li,et al.  Optimal pulse design in quantum control: A unified computational method , 2011, Proceedings of the National Academy of Sciences.

[32]  I.M. Ross,et al.  On the Pseudospectral Covector Mapping Theorem for Nonlinear Optimal Control , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[33]  Qi Gong,et al.  Smooth proximity computation for collision-free optimal control of multiple robotic manipulators , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[34]  Robert Stevens,et al.  Preliminary Design of Earth-Mars Cyclers Using Solar Sails , 2005 .

[35]  I. Michael Ross,et al.  Direct Trajectory Optimization by a Chebyshev Pseudospectral Method ; Journal of Guidance, Control, and Dynamics, v. 25, 2002 ; pp. 160-166 , 2002 .

[36]  Qi Gong,et al.  The Bellman Pseudospectral Method , 2008 .

[37]  Waldy K. Sjauw,et al.  Enhanced Procedures for Direct Trajectory Optimization Using Nonlinear Programming and Implicit Integration , 2006 .

[38]  Qi Gong,et al.  A Chebyshev pseudospectral method for nonlinear constrained optimal control problems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[39]  Paul Williams,et al.  Application of Pseudospectral Methods for Receding Horizon Control , 2004 .

[40]  Richard B. Vinter,et al.  Optimal Control , 2000 .

[41]  I. Michael Ross,et al.  First Flight Results on Time-Optimal Spacecraft Slews , 2012 .

[42]  I. Michael Ross,et al.  Discrete verification of necessary conditions for switched nonlinear optimal control systems , 2001, Proceedings of the 2004 American Control Conference.

[43]  I. Michael Ross,et al.  Legendre Pseudospectral Approximations of Optimal Control Problems , 2003 .

[44]  Viktor K. Prasanna,et al.  High-Performance Designs for Linear Algebra Operations on Reconfigurable Hardware , 2008, IEEE Transactions on Computers.

[45]  I. Michael Ross,et al.  Advances in Pseudospectral Methods for Optimal Control , 2008 .

[46]  I. Michael Ross,et al.  Pseudospectral Methods for Infinite-Horizon Nonlinear Optimal Control Problems , 2005 .

[47]  I.M. Ross,et al.  A Unified Pseudospectral Framework for Nonlinear Controller and Observer Design , 2007, 2007 American Control Conference.

[48]  Joseph A. Paradiso,et al.  Steering law design for redundant single-gimbal control moment gyroscopes. [for spacecraft attitude control] , 1990 .

[49]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..

[50]  I. Michael Ross,et al.  Pseudospectral methods for optimal motion planning of differentially flat systems , 2004, IEEE Transactions on Automatic Control.

[51]  I. Michael Ross,et al.  Pseudospectral Knotting Methods for Solving Optimal Control Problems , 2004 .

[52]  I. Michael Ross,et al.  Optimal Feedback Control: Foundations, Examples, and Experimental Results for a New Approach , 2008 .

[53]  Jeremy Rea,et al.  Launch Vehicle Trajectory Optimization Using a Legendre Pseudospectral Method , 2003 .

[54]  Wei Kang,et al.  Practical stabilization through real-time optimal control , 2006, 2006 American Control Conference.