A deuterium and phosphorus-31 nuclear magnetic resonance study of the interaction of melittin with dimyristoylphosphatidylcholine bilayers and the effects of contaminating phospholipase A2.

The interaction of bee venom melittin with dimyristolphosphatidylcholine (DMPC) selectively deuteriated in the choline head group has been studied by deuterium and phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy. The action of residual phospholipase A2 in melittin samples resulted in mixtures of DMPC and its hydrolytic products that underwent reversible transitions at temperatures between 30 and 35 degrees C from extended bilayers to micellar particles which gave narrow single-line deuterium and phosphorus-31 NMR spectra. Similar transitions were observed in DMPC-myristoyllysophosphatidylcholine (lysoPC)-myristic acid mixtures containing melittin but not in melittin-free mixtures, indicating that melittin is able to stabilize extended bilayers containing DMPC and its hydrolytic products in the liquid-crystalline phase. Melittin, free of phospholipase A2 activity, and at 3-5 mol% relative to DMPC, induced reversible transitions between extended bilayers and micellar particles on passing through the liquid-crystalline to gel phase transition temperature of the lipid, effects similar to those observed in melittin-acyl chain deuterated dipalmitoylphosphatidylcholine (DPPC) mixtures [Dufourc, E. J., Smith, I. C. P., & Dufourcq, J. (1986) Biochemistry 25, 6448-6455]. LysoPC at concentrations of 20 mol% or greater relative to DMPC induced transitions between extended bilayers and micellar particles with characteristics similar to those induced by melittin. It is proposed that these melittin- and lysoPC-induced transitions share similar mechanisms.(ABSTRACT TRUNCATED AT 250 WORDS)

[1]  A. Watts,et al.  The interaction of amino‐deuteromethylated melittin with phospholipid membranes studied by deuterium NMR , 1987, FEBS letters.

[2]  J. Dufourcq,et al.  Molecular details of melittin-induced lysis of phospholipid membranes as revealed by deuterium and phosphorus NMR. , 1986, Biochemistry.

[3]  G. Fourche,et al.  Morphological changes of phosphatidylcholine bilayers induced by melittin: vesicularization, fusion, discoidal particles. , 1986, Biochimica et biophysica acta.

[4]  B. Rudy,et al.  Interactions between membranes and cytolytic peptides. , 1986, Biochimica et biophysica acta.

[5]  G. Fourche,et al.  Reversible disc‐to‐vesicle transition of melittin‐DPPC complexes triggered by the phospholipid acyl chain melting , 1986 .

[6]  J. Seelig,et al.  Magnetic ordering of phospholipid membranes , 1985 .

[7]  M. Lafleur,et al.  A restatement of melittin-induced effects on the thermotropism of zwitterionic phospholipids. , 1984, Biochimica et biophysica acta.

[8]  A. Watts,et al.  Interactions between phospholipid head groups at membrane interfaces: a deuterium and phosphorus nuclear magnetic resonance and spin-label electron spin resonance study. , 1983, Biochemistry.

[9]  F. Jähnig,et al.  The orientation of melittin in lipid membranes. A polarized infrared spectroscopy study. , 1983, Biochimica et Biophysica Acta.

[10]  P. Laggner,et al.  Cooperative effects in the interaction between melittin and phosphatidylcholine model membranes. Studies by temperature scanning densitometry. , 1983, The Journal of biological chemistry.

[11]  F. G. Prendergast,et al.  Lipid order-disorder transitions in complexes of melittin and ditetra- and dipentadecanoylglycerophosphocholines. , 1982, Biochemistry.

[12]  F. Jähnig,et al.  Unifying description of the effect of membrane proteins on lipid order. Verification for the melittin/dimyristoylphosphatidylcholine system. , 1982, Biochemistry.

[13]  A. Watts,et al.  Interactions between phospholipid head groups at membrane interfaces: a deuterium and phosphorus NMR and spin-label ESR study , 1982 .

[14]  J. Seelig,et al.  Interaction of metal ions with phosphatidylcholine bilayer membranes. , 1981, Biochemistry.

[15]  H. Vogel Incorporation of Melittin into phosphatidylcholine bilayers , 1981, FEBS letters.

[16]  C. Dempsey,et al.  New methods of isolating been venom peptides. , 1981, Analytical biochemistry.

[17]  B. de Kruijff,et al.  Effects of tumbling and lateral diffusion on phosphatidylcholine model membrane 31P-NMR lineshapes. , 1980, Biochimica et biophysica acta.

[18]  I. W. Levin,et al.  Interaction of melittin with dimyristoyl phosphatidylcholine liposomes: evidence for boundary lipid by Raman spectroscopy. , 1980, Biochimica et biophysica acta.

[19]  J. Seelig,et al.  Lipid conformation in model membranes and biological membranes , 1980, Quarterly Reviews of Biophysics.

[20]  C. R. Dawson,et al.  The interaction of bee melittin with lipid bilayer membranes. , 1978, Biochimica et biophysica acta.

[21]  R. Miledi,et al.  Isolation and characterization of presynaptically acting neurotoxins from the venom of Bungarus snakes. , 1977, European journal of biochemistry.

[22]  J. Dufourcq,et al.  Intrinsic fluorescence study of lipid-protein interactions in membrane models. Binding of melittin, an amphipathic peptide, to phospholipid vesicles. , 1977, Biochimica et biophysica acta.

[23]  S. Nojima,et al.  Morphology of lipid micelles containing lysolecithin. , 1977, Journal of Biochemistry (Tokyo).

[24]  G. Glenner,et al.  Amyloid A: amphipathic helixes and lipid binding. , 1976, Biochemistry.

[25]  S. P. Verma,et al.  Effect of melittin on thermotropic lipid state transitions in phosphatidylcholine liposomes. , 1976, Biochimica et biophysica acta.

[26]  L. van Deenen,et al.  Barrier properties of lecithin/lysolecithin mixtures. , 1975, Biochimica et biophysica acta.

[27]  G. de Haas,et al.  Histidine at the active site of phospholipase A2. , 1974, Biochemistry.

[28]  E. Gong,et al.  Interaction by sonication of C-apolipoproteins with lipid: an electron microscopic study. , 1974, Biochimica et biophysica acta.

[29]  R. Cottrell,et al.  Phospholipase A from bee venom. , 1971, European journal of biochemistry.

[30]  G. Weissmann,et al.  Interaction of alytic polypeptide, melittin, with lipid membrane systems. , 1969, The Journal of biological chemistry.

[31]  J. Cox,et al.  Ca2+-dependent high-affinity complex formation between calmodulin and melittin. , 1983, The Biochemical journal.

[32]  D. Eisenberg,et al.  The structure of melittin in the form I crystals and its implication for melittin's lytic and surface activities. , 1982, Biophysical journal.

[33]  F. Rumjanek,et al.  The peptide components of bee venom. , 1976, European journal of biochemistry.

[34]  E. Habermann,et al.  Sequenzanalyse des Melittins aus den tryptischen und peptischen Spaltstücken , 1967 .