(p,2)-equations asymmetric at both zero and infinity

Abstract We consider a ( p , 2 ) {(p,2)} -equation, that is, a nonlinear nonhomogeneous elliptic equation driven by the sum of a p-Laplacian and a Laplacian with p > 2 {p>2} . The reaction term is ( p - 1 ) {(p-1)} -linear, but exhibits asymmetric behavior at ± ∞ {\pm\infty} and at 0 ± {0^{\pm}} . Using variational tools, together with truncation and comparison techniques and Morse theory, we prove two multiplicity theorems, one of them providing sign information for all the solutions (positive, negative, nodal).

[1]  Nikolaos S. Papageorgiou,et al.  Nodal solutions for (p,2) -equations , 2014 .

[2]  Leszek Gasiński,et al.  Exercises in Analysis: Part 2: Nonlinear Analysis , 2016 .

[3]  Kuang-Chao Chang In nite Dimensional Morse Theory and Multiple Solution Problems , 1992 .

[4]  Nikolaos S. Papageorgiou,et al.  Exercises in analysis , 2014 .

[5]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[6]  Richard S. Palais,et al.  HOMOTOPY THEORY OF INFINITE DIMENSIONAL MANIFOLDS , 1966 .

[7]  N. Papageorgiou,et al.  Multiplicity of positive solutions for eigenvalue problems of (p,2)-equations , 2012, Boundary Value Problems.

[8]  Mingzheng Sun Multiplicity of solutions for a class of the quasilinear elliptic equations at resonance , 2012 .

[9]  Nikolaos S. Papageorgiou,et al.  Multiple solutions to a Robin problem with indefinite weight and asymmetric reaction , 2015, 1506.02391.

[10]  Marco Degiovanni,et al.  Nontrivial Solutions for p-Laplace Equations with Right-Hand Side Having p-Linear Growth at Infinity , 2005 .

[11]  Nikolaos S. Papageorgiou,et al.  Qualitative Phenomena for Some Classes of Quasilinear Elliptic Equations with Multiple Resonance , 2014 .

[12]  W. Allegretto,et al.  A Picone's identity for the p -Laplacian and applications , 1998 .

[13]  J. Carifio,et al.  Nonlinear Analysis , 1995 .

[14]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .

[15]  Nikolaos S. Papageorgiou,et al.  Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems , 2013 .

[16]  Nikolaos S. Papageorgiou,et al.  Multiple solutions with precise sign for nonlinear parametric Robin problems , 2014 .

[17]  V. Benci,et al.  Solitons in Several Space Dimensions:¶Derrick's Problem and¶Infinitely Many Solutions , 2000 .

[18]  M. Schechter,et al.  The Fucik spectrum and critical groups , 2001 .

[19]  Patrizia Pucci,et al.  The Maximum Principle , 2007 .

[20]  L. Recôva,et al.  An asymmetric superlinear elliptic problem at resonance , 2015 .

[21]  Gary M. Lieberman,et al.  Boundary regularity for solutions of degenerate elliptic equations , 1988 .

[22]  Nikolaos S. Papageorgiou,et al.  Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equations With Inequality Constraints , 2008 .

[23]  Mingzheng Sun,et al.  Critical groups at zero and multiple solutions for a quasilinear elliptic equation , 2015 .

[24]  Nikolaos S. Papageorgiou,et al.  On a Class of Parametric (p, 2)-equations , 2016, 1602.05544.

[25]  Nikolaos S. Papageorgiou,et al.  Resonant (p, 2)-equations with asymmetric reaction , 2015 .

[26]  L. Cherfils,et al.  On the stationary solutions of generalized reaction diffusion equations with $p\& q$-Laplacian , 2004 .

[27]  Martin Schechter Minimax Systems and Critical Point Theory , 2009 .

[28]  Leon O. Chua,et al.  Methods of nonlinear analysis , 1972 .

[29]  Zhanping Liang,et al.  Multiple solutions for semilinear elliptic boundary value problems with double resonance , 2009 .

[30]  Nikolaos S. Papageorgiou,et al.  On p-superlinear equations with a nonhomogeneous differential operator , 2013 .

[31]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[32]  Chuanzhi Bai,et al.  Nonlinear elliptic problem of 2-q-Laplacian type with asymmetric nonlinearities , 2014 .

[33]  N. Papageorgiou,et al.  Asymmetric (p, 2)-equations with double resonance , 2017 .

[34]  Nikolaos S. Papageorgiou,et al.  Infinitely Many Nodal Solutions for Nonlinear Nonhomogeneous Robin Problems , 2016 .