Generalising submodularity and horn clauses: Tractable optimization problems defined by tournament pair multimorphisms

The submodular function minimization problem (SFM) is a fundamental problem in combinatorial optimization and several fully combinatorial polynomial-time algorithms have recently been discovered to solve this problem. The most general versions of these algorithms are able to minimize any submodular function whose domain is a set of tuples over any totally-ordered finite set and whose range includes both finite and infinite values. In this paper we demonstrate that this general form of SFM is just one example of a much larger class of tractable discrete optimization problems defined by valued constraints. These tractable problems are characterized by the fact that their valued constraints have an algebraic property which we call a tournament pair multimorphism. This larger tractable class also includes the problem of satisfying a set of Horn clauses (Horn-SAT), as well as various extensions of this problem to larger finite domains.

[1]  Martin C. Cooper,et al.  Constraints, Consistency and Closure , 1998, Artif. Intell..

[2]  Martin C. Cooper,et al.  Soft Constraints: Complexity and Multimorphisms , 2003, CP.

[3]  D. M. Topkis Supermodularity and Complementarity , 1998 .

[4]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[5]  H. Narayanan Submodular functions and electrical networks , 1997 .

[6]  Roger Mohr,et al.  Good Old Discrete Relaxation , 1988, ECAI.

[7]  Chia-Hoang Lee,et al.  Comments on Mohr and Henderson's Path Consistency Algorithm , 1988, Artif. Intell..

[8]  Martin C. Cooper,et al.  Supermodular functions and the complexity of MAX CSP , 2005, Discret. Appl. Math..

[9]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[10]  Maurice Queyranne,et al.  Minimizing symmetric submodular functions , 1998, Math. Program..

[11]  Nadia Creignou,et al.  A Dichotomy Theorem for Maximum Generalized Satisfiability Problems , 1995, J. Comput. Syst. Sci..

[12]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[13]  Satoru Fujishige,et al.  Realization of set functions as cut functions of graphs and hypergraphs , 2001, Discret. Math..

[14]  Peter Jonsson,et al.  The Approximability of Three-valued MAX CSP , 2004, SIAM J. Comput..

[15]  Satoru Iwata A Faster Scaling Algorithm for Minimizing Submodular Functions , 2003, SIAM J. Comput..

[16]  Martin C. Cooper,et al.  A Complete Characterization of Complexity for Boolean Constraint Optimization Problems , 2004, CP.

[17]  Martin C. Cooper High-Order Consistency in Valued Constraint Satisfaction , 2005, Constraints.

[18]  Satoru Iwata,et al.  A fully combinatorial algorithm for submodular function minimization , 2001, SODA '02.

[19]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[20]  Andrei A. Krokhin,et al.  Maximum Constraint Satisfaction on Diamonds , 2005, CP.

[21]  Jens Gustedt,et al.  Efficient and Practical Algorithms for Sequential Modular Decomposition , 2001, J. Algorithms.

[22]  Andrei A. Bulatov,et al.  Tractable conservative constraint satisfaction problems , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[23]  Satoru Iwata,et al.  A combinatorial, strongly polynomial-time algorithm for minimizing submodular functions , 2000, STOC '00.

[24]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..

[25]  Martin C. Cooper An Optimal k-Consistency Algorithm , 1989, Artif. Intell..

[26]  Thomas Schiex,et al.  Valued Constraint Satisfaction Problems: Hard and Easy Problems , 1995, IJCAI.

[27]  Peter Jeavons,et al.  Tractable constraints closed under a binary operation , 2000 .

[28]  Rina Dechter,et al.  Constraint Processing , 1995, Lecture Notes in Computer Science.

[29]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[30]  J. A. d'Auriac,et al.  Optimal cooperation and submodularity for computing Potts' partition functions with a large number of states , 2002, cond-mat/0204055.

[31]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[32]  Martin C. Cooper,et al.  An Algebraic Characterisation of Complexity for Valued Constraint , 2006, CP.

[33]  William H. Cunningham,et al.  Minimum cuts, modular functions, and matroid polyhedra , 1985, Networks.

[34]  Martin C. Cooper,et al.  The complexity of soft constraint satisfaction , 2006, Artif. Intell..

[35]  Luca Trevisan,et al.  The Approximability of Constraint Satisfaction Problems , 2001, SIAM J. Comput..

[36]  Martin C. Cooper,et al.  Tractable Constraints on Ordered Domains , 1995, Artif. Intell..

[37]  Thomas Schiex,et al.  Solving weighted CSP by maintaining arc consistency , 2004, Artif. Intell..

[38]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[39]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[40]  Alain Billionnet,et al.  Maximizing a supermodular pseudoboolean function: A polynomial algorithm for supermodular cubic functions , 1985, Discret. Appl. Math..

[41]  Satoru Iwata,et al.  Bisubmodular Function Minimization , 2001, IPCO.

[42]  Martin C. Cooper Reduction operations in fuzzy or valued constraint satisfaction , 2003, Fuzzy Sets Syst..

[43]  Peter L. Hammer,et al.  Horn Functions and Submodular Boolean Functions , 1997, Theor. Comput. Sci..

[44]  H. Narayanan,et al.  A note on the minimization of symmetric and general submodular functions , 2003, Discret. Appl. Math..

[45]  Ross M. McConnell,et al.  Linear-time modular decomposition of directed graphs , 2005, Discret. Appl. Math..

[46]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraint satisfaction problems on a 3-element set , 2006, JACM.

[47]  Gregory Gutin,et al.  Minimum cost and list homomorphisms to semicomplete digraphs , 2005, Discret. Appl. Math..

[48]  James B. Orlin,et al.  A faster strongly polynomial time algorithm for submodular function minimization , 2007, Math. Program..

[49]  Martin C. Cooper,et al.  A Maximal Tractable Class of Soft Constraints , 2003, IJCAI.

[50]  Jean H. Gallier,et al.  Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn Formulae , 1984, J. Log. Program..

[51]  A. Bulatov Combinatorial problems raised from 2-semilattices , 2006 .

[52]  Sanjeev Khanna,et al.  3. Boolean Constraint Satisfaction Problems , 2001 .