An Extended Discontinuous Galerkin Framework for Multiphase Flows

We present a framework for handling cut cells in a high order discontinuous Galerkin (DG) context. To describe the boundary between fluid phases, we use a level-set formulation. When the interface cuts a computational cell, we discretize the resulting sub-cells with the same DG method as used on standard cells. This requires a suitable quadrature procedure. Within this framework, we present a solver for the two-phase Navier-Stokes equation, a reinitialization procedure for the level-set and a solver for transport-processes on the surface.

[1]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..

[2]  Frédéric Gibou,et al.  Geometric integration over irregular domains with application to level-set methods , 2007, J. Comput. Phys..

[3]  Florian Kummer,et al.  Patch-recovery filters for curvature in discontinuous Galerkin-based level-set methods , 2015 .

[4]  Liang Wu,et al.  A Third Order Fast Sweeping Method with Linear Computational Complexity for Eikonal Equations , 2015, J. Sci. Comput..

[5]  Charles M. Elliott,et al.  Eulerian finite element method for parabolic PDEs on implicit surfaces , 2008 .

[6]  D. Kuzmin,et al.  A minimization-based finite element formulation for interface-preserving level set reinitialization , 2013, Computing.

[7]  Chi-Wang Shu,et al.  A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[8]  Florian Kummer,et al.  A SIMPLE based discontinuous Galerkin solver for steady incompressible flows , 2013, J. Comput. Phys..

[9]  A. Grossmann,et al.  Iterative method for calculation of the Weierstrass elliptic function , 1990 .

[10]  Charles M. Elliott,et al.  Finite elements on evolving surfaces , 2007 .

[11]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[12]  Chi-Wang Shu,et al.  A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations , 2007, Journal of Computational Physics.

[13]  Zydrunas Gimbutas,et al.  A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions , 2010, Comput. Math. Appl..

[14]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[15]  James Bremer,et al.  A Nonlinear Optimization Procedure for Generalized Gaussian Quadratures , 2010, SIAM J. Sci. Comput..

[16]  F. Kummer Extended discontinuous Galerkin methods for two‐phase flows: the spatial discretization , 2017 .

[17]  Stephen C. Anco,et al.  Direct construction method for conservation laws of partial differential equations Part I: Examples of conservation law classifications , 2001, European Journal of Applied Mathematics.

[18]  O. C. Zienkiewicz,et al.  The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .

[19]  Thomas-Peter Fries,et al.  Higher‐order XFEM for curved strong and weak discontinuities , 2009 .

[20]  F. Kummer,et al.  Simple multidimensional integration of discontinuous functions with application to level set methods , 2012 .

[21]  C. Ross Ethier,et al.  A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations , 2007, J. Comput. Phys..

[22]  Stephen C. Anco,et al.  Local Transformations and Conservation Laws , 2010 .

[23]  F. Kummer,et al.  Interface‐preserving level‐set reinitialization for DG‐FEM , 2017 .

[24]  Emilie Marchandise Simulation of three-dimensional two-phase flows : coupling of a stabilized finite element method with a discontinuous level set approach/ , 2006 .

[25]  A. Reusken,et al.  A finite element based level set method for two-phase incompressible flows , 2006 .

[26]  J. F. Harper Stagnant-cap bubbles with both diffusion and adsorption rate-determining , 2004, Journal of Fluid Mechanics.

[27]  Chunming Li,et al.  Level set evolution without re-initialization: a new variational formulation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[28]  Grégory Legrain,et al.  High order X-FEM and levelsets for complex microstructures: Uncoupling geometry and approximation , 2012 .

[29]  Wolfgang A. Wall,et al.  Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods , 2013 .

[30]  N. Sukumar,et al.  Generalized Gaussian Quadrature Rules for Discontinuities and Crack Singularities in the Extended Finite Element Method , 2010 .

[31]  J. Hesthaven,et al.  A level set discontinuous Galerkin method for free surface flows , 2006 .

[32]  Jean-François Remacle,et al.  A 3D strongly coupled implicit discontinuous Galerkin level set-based method for modeling two-phase flows , 2013 .

[33]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[34]  Christina Kallendorf,et al.  An Eulerian discontinuous Galerkin method for the numerical simulation of interfactial transport , 2017 .

[35]  Stephen C. Anco,et al.  Construction of conservation laws: how the direct method generalizes Noether's theorem , 2009 .

[36]  Dziuk,et al.  SURFACE FINITE ELEMENTS FOR , 2007 .

[37]  Jean-François Remacle,et al.  A stabilized finite element method using a discontinuous level set approach for the computation of bubble dynamics , 2007, J. Comput. Phys..

[38]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[39]  Charles M. Elliott,et al.  Numerical simulation of dealloying by surface dissolution via the evolving surface finite element method , 2008, J. Comput. Phys..

[40]  Thomas Weiland,et al.  A Boundary Conformal DG Approach for Electro-Quasistatics Problems , 2012 .

[41]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[42]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[43]  Songting Luo,et al.  A uniformly second order fast sweeping method for eikonal equations , 2013, J. Comput. Phys..

[44]  A. Coutinho,et al.  Simple finite element‐based computation of distance functions in unstructured grids , 2007 .

[45]  Florian Kummer,et al.  An Extension of the Discontinuous Galerkin Method for the Singular Poisson Equation , 2013, SIAM J. Sci. Comput..

[46]  Martin Oberlack,et al.  Exact solutions to the interfacial surfactant transport equation on a droplet in a Stokes flow regime , 2015 .

[47]  Jean-François Remacle,et al.  A stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows , 2006, J. Comput. Phys..

[48]  Chi-Wang Shu,et al.  Uniformly Accurate Discontinuous Galerkin Fast Sweeping Methods for Eikonal Equations , 2011, SIAM J. Sci. Comput..

[49]  Mark Sussman,et al.  A Discontinuous Spectral Element Method for the Level Set Equation , 2003, J. Sci. Comput..

[50]  Petia M. Vlahovska,et al.  Small-deformation theory for a surfactant-covered drop in linear flows , 2009, Journal of Fluid Mechanics.

[51]  G. Bluman,et al.  Applications of Symmetry Methods to Partial Differential Equations , 2009 .

[52]  Demetrios T. Papageorgiou,et al.  Increased mobility of a surfactant-retarded bubble at high bulk concentrations , 1999, Journal of Fluid Mechanics.

[53]  C. Engwer An Unfitted Discontinuous Galerkin Scheme for Micro-scale Simulations and Numerical Upscaling , 2009 .

[54]  Lilia Krivodonova,et al.  A discontinuous Galerkin method for solutions of the Euler equations on Cartesian grids with embedded geometries , 2013, J. Comput. Sci..

[55]  R. Saye High-order methods for computing distances to implicitly defined surfaces , 2014 .

[56]  Charles M. Elliott,et al.  An Eulerian approach to transport and diffusion on evolving implicit surfaces , 2009, Comput. Vis. Sci..

[57]  N. Sukumar,et al.  Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons , 2011 .

[58]  Heinz Pitsch,et al.  A spectrally refined interface approach for simulating multiphase flows , 2009, J. Comput. Phys..

[59]  F. Kummer,et al.  Highly accurate surface and volume integration on implicit domains by means of moment‐fitting , 2013 .

[60]  Guillermo Sapiro,et al.  Fourth order partial differential equations on general geometries , 2006, J. Comput. Phys..

[61]  G. Bluman,et al.  Direct construction method for conservation laws of partial differential equations Part II: General treatment , 2001, European Journal of Applied Mathematics.

[62]  J. F. Harper ON SPHERICAL BUBBLES RISING STEADILY IN DILUTE SURFACTANT SOLUTIONS , 1974 .

[63]  Martin Oberlack,et al.  Conservation laws of surfactant transport equations , 2012 .

[64]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[65]  F. Kummer,et al.  A high‐order discontinuous Galerkin method for compressible flows with immersed boundaries , 2017 .

[66]  Chi-Wang Shu,et al.  A second order discontinuous Galerkin fast sweeping method for Eikonal equations , 2008, J. Comput. Phys..

[67]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[68]  Frédéric Gibou,et al.  Robust second-order accurate discretizations of the multi-dimensional Heaviside and Dirac delta functions , 2008, J. Comput. Phys..

[69]  Olivier Desjardins,et al.  A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows , 2013, J. Comput. Phys..

[70]  Ernst Rank,et al.  The finite cell method for three-dimensional problems of solid mechanics , 2008 .