Review of Techniques for Privacy-Preserving Blockchain Systems

Privacy plays a central role in many application domains that utilize blockchain technology. It is central in Personal Data Management, Electronic Health records, or systems that interact with any public institution. However, blockchains are subject to potential privacy issues such as transaction linkability, compliance with data protection regulations, on-chain data privacy, and malicious smart contracts. To deal with these challenges, novel privacy-preserving solutions based on crypto-privacy techniques are emerging. The goal of this survey is to provide insights into the privacy-preserving techniques associated with blockchain. We analyse the existing privacy-preserving mechanisms for blockchain and propose a framework that categorizes the main techniques examined. Furthermore, we summarize some typical applications of blockchain where the privacy protection is the main requirement.

[1]  Pascal Paillier,et al.  Public-Key Cryptosystems Based on Composite Degree Residuosity Classes , 1999, EUROCRYPT.

[2]  Vladimir Kolesnikov,et al.  A Pragmatic Introduction to Secure Multi-Party Computation , 2019, Found. Trends Priv. Secur..

[3]  Silvio Micali,et al.  Proofs that yield nothing but their validity and a methodology of cryptographic protocol design , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[4]  Sherali Zeadally,et al.  A survey on privacy protection in blockchain system , 2019, J. Netw. Comput. Appl..

[5]  Eli Ben-Sasson,et al.  Scalable, transparent, and post-quantum secure computational integrity , 2018, IACR Cryptol. ePrint Arch..

[6]  Mauro Conti,et al.  A Survey on Security and Privacy Issues of Bitcoin , 2017, IEEE Communications Surveys & Tutorials.

[7]  Alex Pentland,et al.  CHAPTER 15 Enigma: Decentralized Computation Platform with Guaranteed Privacy , 2018 .

[8]  Oded Goldreich,et al.  How to construct constant-round zero-knowledge proof systems for NP , 1996, Journal of Cryptology.

[9]  Joe Kilian,et al.  On the Concurrent Composition of Zero-Knowledge Proofs , 1999, EUROCRYPT.

[10]  Khaled El Emam,et al.  The application of differential privacy to health data , 2012, EDBT-ICDT '12.

[11]  Kumkum Garg,et al.  A review on host vs. Network Mobility (NEMO) handoff techniques in heterogeneous network , 2014, Proceedings of 3rd International Conference on Reliability, Infocom Technologies and Optimization.

[12]  Meikang Qiu,et al.  Differential Privacy-Based Blockchain for Industrial Internet-of-Things , 2020, IEEE Transactions on Industrial Informatics.

[13]  Silvio Micali,et al.  How to play ANY mental game , 1987, STOC.

[14]  Martin Tompa,et al.  Random self-reducibility and zero knowledge interactive proofs of possession of information , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[15]  Eli Ben-Sasson,et al.  Scalable Zero Knowledge Via Cycles of Elliptic Curves , 2016, Algorithmica.

[16]  Michael Kunz,et al.  Towards Blockchain-Based Identity and Access Management for Internet of Things in Enterprises , 2018, TrustBus.

[17]  Shuai Yang,et al.  Secure Smart Contract System Built on SMPC Over Blockchain , 2018, 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData).

[18]  Mariusz Nowostawski,et al.  Self-Sovereign Identity Systems , 2019 .

[19]  Dan Boneh,et al.  Bulletproofs: Short Proofs for Confidential Transactions and More , 2018, 2018 IEEE Symposium on Security and Privacy (SP).

[20]  Qi Liu,et al.  Homomorphic Consortium Blockchain for Smart Home System Sensitive Data Privacy Preserving , 2019, IEEE Access.

[21]  T. Elgamal A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, CRYPTO 1984.

[22]  Eli Ben-Sasson,et al.  Zerocash: Decentralized Anonymous Payments from Bitcoin , 2014, 2014 IEEE Symposium on Security and Privacy.

[23]  Pedro Moreno-Sanchez,et al.  CoinShuffle: Practical Decentralized Coin Mixing for Bitcoin , 2014, ESORICS.

[24]  Vinod Vaikuntanathan,et al.  Efficient Fully Homomorphic Encryption from (Standard) LWE , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[25]  Satoshi Nakamoto Bitcoin : A Peer-to-Peer Electronic Cash System , 2009 .

[26]  Marina Blanton,et al.  Secure Multiparty Computation , 2011, Encyclopedia of Cryptography and Security.

[27]  Shen Noether,et al.  Ring Confidential Transactions , 2016, Ledger.

[28]  Ivan Damgård,et al.  Secure Multiparty Computation Goes Live , 2009, Financial Cryptography.

[29]  Vinod Vaikuntanathan,et al.  Efficient Fully Homomorphic Encryption from (Standard) LWE , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[30]  Silvio Micali,et al.  Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems , 1991, JACM.

[31]  Craig Gentry,et al.  Fully homomorphic encryption using ideal lattices , 2009, STOC '09.

[32]  Amit Sahai,et al.  Obfuscation-Based Non-black-box Simulation and Four Message Concurrent Zero Knowledge for NP , 2015, TCC.

[33]  Dan Boneh,et al.  Evaluating 2-DNF Formulas on Ciphertexts , 2005, TCC.

[34]  Jeremy Clark,et al.  SoK: Research Perspectives and Challenges for Bitcoin and Cryptocurrencies , 2015, 2015 IEEE Symposium on Security and Privacy.

[35]  Marcin Andrychowicz,et al.  Secure Multiparty Computations on Bitcoin , 2014, 2014 IEEE Symposium on Security and Privacy.

[36]  Jun Zhao,et al.  Mobile Edge Computing, Blockchain and Reputation-based Crowdsourcing IoT Federated Learning: A Secure, Decentralized and Privacy-preserving System , 2019, ArXiv.

[37]  David Chaum,et al.  Untraceable electronic mail, return addresses, and digital pseudonyms , 1981, CACM.

[38]  Jared Saia,et al.  Recent Results in Scalable Multi-Party Computation , 2015, SOFSEM.

[39]  Tsz Hon Yuen,et al.  RingCT 2.0: A Compact Accumulator-Based (Linkable Ring Signature) Protocol for Blockchain Cryptocurrency Monero , 2017, ESORICS.

[40]  Amit Sahai,et al.  Leakage-Resilient Zero Knowledge , 2011, CRYPTO.

[41]  Youakim Badr,et al.  Identity Management Systems for the Internet of Things: A Survey Towards Blockchain Solutions , 2018, Sensors.

[42]  Keke Gai,et al.  Privacy-Preserving Energy Trading Using Consortium Blockchain in Smart Grid , 2019, IEEE Transactions on Industrial Informatics.

[43]  Nicolas van Saberhagen CryptoNote v 2.0 , 2013 .

[44]  Ronald L. Rivest,et al.  ON DATA BANKS AND PRIVACY HOMOMORPHISMS , 1978 .

[45]  Mauro Conti,et al.  A Survey on Homomorphic Encryption Schemes: Theory and Implementation , 2017 .

[46]  Silvio Micali,et al.  Probabilistic Encryption , 1984, J. Comput. Syst. Sci..

[47]  Silvio Micali,et al.  Probabilistic encryption & how to play mental poker keeping secret all partial information , 1982, STOC '82.

[48]  Craig Gentry,et al.  Pinocchio: Nearly Practical Verifiable Computation , 2013, 2013 IEEE Symposium on Security and Privacy.

[49]  Michael J. Fischer,et al.  A robust and verifiable cryptographically secure election scheme , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[50]  Peng Jiang,et al.  A Survey on the Security of Blockchain Systems , 2017, Future Gener. Comput. Syst..

[51]  Moni Naor,et al.  Concurrent zero-knowledge , 1998, STOC '98.

[52]  Silvio Micali,et al.  The knowledge complexity of interactive proof-systems , 1985, STOC '85.

[53]  Stathis Zachos,et al.  Does co-NP Have Short Interactive Proofs? , 1987, Inf. Process. Lett..

[54]  Aaron Roth,et al.  The Algorithmic Foundations of Differential Privacy , 2014, Found. Trends Theor. Comput. Sci..

[55]  David Chaum,et al.  Blind Signatures for Untraceable Payments , 1982, CRYPTO.

[56]  Yael Tauman Kalai,et al.  How to Leak a Secret: Theory and Applications of Ring Signatures , 2001, Essays in Memory of Shimon Even.

[57]  Amit Sahai,et al.  Secure Multi-Party Computation , 2013 .

[58]  Saeed Samet,et al.  Privacy-Preserving Statistical Analysis of Health Data Using Paillier Homomorphic Encryption and Permissioned Blockchain , 2019, 2019 IEEE International Conference on Big Data (Big Data).

[59]  Sharath Yaji,et al.  Privacy Preserving in Blockchain Based on Partial Homomorphic Encryption System for Ai Applications , 2018, 2018 IEEE 25th International Conference on High Performance Computing Workshops (HiPCW).

[60]  Koutarou Suzuki,et al.  Traceable Ring Signature , 2007, Public Key Cryptography.

[61]  Rafail Ostrovsky,et al.  4-Round Resettably-Sound Zero Knowledge , 2014, TCC.

[62]  Shen-Shyang Ho,et al.  Differential privacy for location pattern mining , 2011, SPRINGL '11.

[63]  David Chaum,et al.  Minimum Disclosure Proofs of Knowledge , 1988, J. Comput. Syst. Sci..

[64]  Eli Ben-Sasson,et al.  Scalable Zero Knowledge Via Cycles of Elliptic Curves , 2014, Algorithmica.

[65]  Xiaohui Liang,et al.  Sybil Attacks and Their Defenses in the Internet of Things , 2014, IEEE Internet of Things Journal.

[66]  Chris Peikert,et al.  On Ideal Lattices and Learning with Errors over Rings , 2010, JACM.

[67]  Eiichiro Fujisaki Sub-linear Size Traceable Ring Signatures without Random Oracles , 2011, CT-RSA.

[68]  Torben P. Pedersen Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing , 1991, CRYPTO.

[69]  Jeremy Clark,et al.  Mixcoin: Anonymity for Bitcoin with Accountable Mixes , 2014, Financial Cryptography.

[70]  Zibin Zheng,et al.  Blockchain challenges and opportunities: a survey , 2018, Int. J. Web Grid Serv..

[71]  Florian Kerschbaum,et al.  Zero-knowledge using garbled circuits: how to prove non-algebraic statements efficiently , 2013, IACR Cryptol. ePrint Arch..

[72]  Vinod Vaikuntanathan,et al.  Can homomorphic encryption be practical? , 2011, CCSW '11.

[73]  Yair Oren,et al.  On the cunning power of cheating verifiers: Some observations about zero knowledge proofs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[74]  Yehuda Lindell,et al.  From Keys to Databases - Real-World Applications of Secure Multi-Party Computation , 2018, IACR Cryptol. ePrint Arch..

[75]  Manuel Blum,et al.  Non-interactive zero-knowledge and its applications , 1988, STOC '88.

[76]  Taher El Gamal A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, IEEE Trans. Inf. Theory.

[77]  Eli Ben-Sasson,et al.  Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture , 2014, USENIX Security Symposium.

[78]  Koutarou Suzuki,et al.  Traceable Ring Signature , 2007, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[79]  Adi Shamir,et al.  Multiple non-interactive zero knowledge proofs based on a single random string , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[80]  Jennifer Seberry,et al.  Fundamentals of Computer Security , 2003, Springer Berlin Heidelberg.

[81]  Jesper Madsen,et al.  ZKBoo: Faster Zero-Knowledge for Boolean Circuits , 2016, USENIX Security Symposium.

[82]  Georg Carle,et al.  A Performance and Resource Consumption Assessment of Secret Sharing Based Secure Multiparty Computation , 2018, DPM/CBT@ESORICS.

[83]  Abhi Shelat,et al.  Doubly-Efficient zkSNARKs Without Trusted Setup , 2018, 2018 IEEE Symposium on Security and Privacy (SP).

[84]  Arafatur Rahman,et al.  Blockchain Security Hole: Issues and Solutions , 2017 .