A modeling study of global mixed aerosol fields

A mixed aerosol dynamical model which simulates the growth of mixed aerosol populations of sulfate, black carbon, organic carbon, and sea salt is described, and results from the implementation of this model in the Tracer Model 2 (TM2) off-line chemical transport model are presented. We represent the aerosol size distribution by eight modes: nucleation mode sulfate, Aitken mode sulfate, accumulation mode sulfate, pure fossil fuel black carbon, a mixed mode of fossil fuel black carbon, organic carbon, and sulfate, pure biomass burning black carbon, a mixed mode of biomass burning black carbon, organic carbon, and sulfate, and a sea-salt mode. The model reproduces both observed zonal average marine aerosol number concentrations and observed sulfate mass/accumulation mode number concentration ratios from the North Atlantic but does less well at reproducing number concentrations at individual sites and consistently overpredicts nucleation and Aitken mode concentrations in the free troposphere. A comprehensive validation of the model is not possible with the available data, but qualitatively, it is consistent with current understanding. The model shows that the accumulation mode at the surface is dominated by the mixed modes over the fossil fuel and biomass source regions, the pure sulfate mode in peripheral continental and marine areas and sea salt in the southern oceans. A preindustrial study showed that there is not a consistent positive linear relationship between the anthropogenic increase in aerosol mass burden and the corresponding increase in aerosol number burden, and regionally there may be an inverse relationship.

[1]  R. Larsen,et al.  Nitrogen and sulfur species in acrosols at Mawson, Antarctica, and their relationship to natural radionuclides , 1992 .

[2]  William B. Rossow,et al.  Validation of ISCCP Cloud Detections , 1993 .

[3]  John H. Seinfeld,et al.  Simulation of multicomponent aerosol dynamics , 1992 .

[4]  Fred Gelbard,et al.  A one-dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer 1. Model description , 1998 .

[5]  W. Rossow,et al.  Cloud Detection Using Satellite Measurements of Infrared and Visible Radiances for ISCCP , 1993 .

[6]  Paul J. Crutzen,et al.  An inverse modeling approach to investigate the global atmospheric methane cycle , 1997 .

[7]  Martin Heimann,et al.  The global atmospheric tracer model TM3 , 1995 .

[8]  F. Binkowski,et al.  The Regional Particulate Matter Model 1. Model description and preliminary results , 1995 .

[9]  P. Crutzen,et al.  Black carbon formation by savanna fires: Measurements and implications for the global carbon cycle , 1996 .

[10]  S. Pandis,et al.  Dimethylsulfide chemistry in the remote marine atmosphere: Evaluation and sensitivity analysis of available mechanisms , 1997 .

[11]  J. Prospero,et al.  Non-sea-salt sulfate and methanesulfonate at American Samoa , 1994 .

[12]  John H. Seinfeld,et al.  Formation and cycling of aerosols in the global troposphere , 2000 .

[13]  C. A. Phillips,et al.  Long‐term measurements of free‐tropospheric sulfate at Mauna Loa: Comparison with global model simulations , 2001 .

[14]  Peter H. McMurry,et al.  Modal Aerosol Dynamics Modeling , 1997 .

[15]  A. H. Woodcock,et al.  THE PRODUCTION, CONCENTRATION, AND VERTICAL DISTRIBUTION OF THE SEA‐SALT AEROSOL * , 1980 .

[16]  J. Levine Biomass Burning: Its History, Use, and Distribution and Its Impact on Environmental Quality and Global Climate , 1991 .

[17]  D. L. Roberts,et al.  A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols , 1994, Nature.

[18]  Henning Rodhe,et al.  A global three-dimensional model of the tropospheric sulfur cycle , 1991 .

[19]  R. Van Dingenen,et al.  Evidence for anthropogenic impact on number concentration and sulfate content of cloud‐processed aerosol particles over the North Atlantic , 1995 .

[20]  Olivier Boucher,et al.  The sulfate‐CCN‐cloud albedo effect , 1995 .

[21]  Thomas E. Graedel,et al.  Global gridded inventories of anthropogenic emissions of sulfur and nitrogen , 1996 .

[22]  C. N. Davies,et al.  The Mechanics of Aerosols , 1964 .

[23]  F. Stratmann,et al.  A 2-D multicomponent modal aerosol model and its application to laminar flow reactors , 1997 .

[24]  Giacomo R. DiTullio,et al.  A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month , 1999 .

[25]  Robert McGraw,et al.  Description of Aerosol Dynamics by the Quadrature Method of Moments , 1997 .

[26]  Philip B. Russell,et al.  Aerosol properties and radiative effects in the United States East Coast haze plume: An overview of the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) , 1999 .

[27]  J. Lelieveld,et al.  What controls tropospheric ozone , 2000 .

[28]  B. A. Bodhaine,et al.  Aerosol absorption measurements at Barrow, Mauna Loa and the south pole , 1995 .

[29]  P. Crutzen,et al.  Human‐activity‐enhanced formation of organic aerosols by biogenic hydrocarbon oxidation , 2000 .

[30]  Mian Chin,et al.  Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results , 1997 .

[31]  M. Memmesheimer,et al.  Modal aerosol dynamics model for Europe: development and first applications , 1998 .

[32]  F. Raes Entrainment of free tropospheric aerosols as a regulating mechanism for cloud condensation nuclei in the remote marine boundary layer , 1995 .

[33]  Robert J. Charlson,et al.  Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols , 1991 .

[34]  Antony D. Clarke,et al.  Particle production in the remote marine atmosphere: Cloud outflow and subsidence during ACE 1 , 1998 .

[35]  S. Kreidenweis,et al.  Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer , 1998, Nature.

[36]  P. Crutzen,et al.  A global three-dimensional source-receptor model investigation using 85Kr , 1989 .

[37]  J. Kiehl,et al.  The Relative Roles of Sulfate Aerosols and Greenhouse Gases in Climate Forcing , 1993, Science.

[38]  D. Jacob,et al.  Global simulation of tropospheric O3-NOx-hydrocarbon chemistry , 1998 .

[39]  J. Seinfeld Atmospheric Chemistry and Physics of Air Pollution , 1986 .

[40]  J. Wilson,et al.  A global black carbon aerosol model , 1996 .

[41]  L. Pirjola,et al.  Parameterizations for sulfuric acid/water nucleation rates , 1998 .

[42]  A. Clarke,et al.  Atmospheric nuclei and related aerosol fields over the Atlantic: Clean subsiding air and continental pollution during ASTEX , 1997 .

[43]  S. Choate,et al.  Statistical description of the size properties of non uniform particulate substances , 1929 .

[44]  M. Jacobson Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols , 2001 .

[45]  L. Pirjola,et al.  Modelling the formation of H2SO4–H2O particles in rural, urban and marine conditions , 1998 .

[46]  P. V. Velthoven,et al.  Observations of aerosols in the free troposphere and marine boundary layer of the subtropical Northeast Atlantic: Discussion of processes determining their size distribution , 1997 .

[47]  Barry J. Huebert,et al.  International Global Atmospheric Chemistry (IGAC) Project's First Aerosol Characterization Experiment (ACE 1): Overview , 1998 .

[48]  M3 a multi modal model for aerosol dynamics , 1996 .

[49]  J. Putaud,et al.  Processes determining the relationship between aerosol number and non‐sea‐salt sulfate mass concentrations in the clean and perturbed marine boundary layer , 1999 .

[50]  S. Friedlander DYNAMICS OF AEROSOL FORMATION BY CHEMICAL REACTION * , 1983 .

[51]  A. Jaecker-Voirol,et al.  Nucleation rate in a binary mixture of sulfuric acid and water vapor , 1988 .

[52]  J. Haywood,et al.  The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget , 1995 .

[53]  S. Schwartz,et al.  Six‐moment representation of multiple aerosol populations in a sub‐hemispheric chemical transformation model , 2000 .

[54]  P. Gustafson,et al.  On the Distribution of Sea Salt over the United States and its Removal by Precipitation , 1957 .

[55]  R. Dingenen,et al.  Modelling formation and growth of H2SO4-H2O aerosols: Uncertainty analysis and experimental evaluation , 1992 .

[56]  Frank McGovern,et al.  The 2nd Aerosol Characterization Experiment (ACE-2): general overview and main results , 2000 .

[57]  T. Bates,et al.  Regional and seasonal variations in the flux of oceanic dimethylsulfide to the atmosphere , 1987 .

[58]  R. Dingenen,et al.  Size distribution and chemical composition of marine aerosols: a compilation and review , 2000 .

[59]  Philip B. Russell,et al.  Chemical apportionment of aerosol column optical depth off the mid‐Atlantic coast of the United States , 1997 .

[60]  P. Crutzen,et al.  Estimates of Annual and Regional Releases of CO2 and Other Trace Gases to the Atmosphere from Fires in the Tropics, Based on the FAO Statistics for the Period 1975–1980 , 1990 .

[61]  L. Barrie,et al.  Arctic lower tropospheric aerosol trends and composition at Alert, Canada: 1980–1995 , 1999 .

[62]  R. Dingenen,et al.  Simulations of condensation and cloud condensation nuclei from biogenic SO2 in the remote marine boundary layer , 1992 .

[63]  G. Russell,et al.  A New Finite-Differencing Scheme for the Tracer Transport Equation , 1981 .

[64]  J. Bottenheim,et al.  Mechanism of the homogeneous oxidation of sulfur dioxide in the troposphere , 1978 .