Non-local Functionals Related to the Total Variation and Connections with Image Processing

We present new results concerning the approximation of the total variation, $$\int _{\Omega } |\nabla u|$$∫Ω|∇u|, of a function u by non-local, non-convex functionals of the form $$\begin{aligned} \Lambda _\delta (u) = \int _{\Omega } \int _{\Omega } \frac{\delta \varphi \big ( |u(x) - u(y)|/ \delta \big )}{|x - y|^{d+1}} \, dx \, dy, \end{aligned}$$Λδ(u)=∫Ω∫Ωδφ(|u(x)-u(y)|/δ)|x-y|d+1dxdy,as $$\delta \rightarrow 0$$δ→0, where $$\Omega $$Ω is a domain in $$\mathbb {R}^d$$Rd and $$\varphi : [0, + \infty ) \rightarrow [0, + \infty )$$φ:[0,+∞)→[0,+∞) is a non-decreasing function satisfying some appropriate conditions. The mode of convergence is extremely delicate and numerous problems remain open. De Giorgi’s concept of $$\Gamma $$Γ-convergence illuminates the situation, but also introduces mysterious novelties. The original motivation of our work comes from Image Processing.

[1]  L. Ambrosio,et al.  Perimeter of sets and BMO-type norms , 2014 .

[2]  Frédo Durand,et al.  Bilateral Filtering: Theory and Applications: Series: Foundations and Trends® in Computer Graphics and Vision , 2009 .

[3]  N. Fusco The quantitative isoperimetric inequality and related topics , 2015 .

[4]  Jong-Sen Lee,et al.  Digital image smoothing and the sigma filter , 1983, Comput. Vis. Graph. Image Process..

[5]  J. Bourgain,et al.  A new function space and applications , 2015 .

[6]  Alessio Figalli,et al.  Isoperimetry and Stability Properties of Balls with Respect to Nonlocal Energies , 2014, Communications in Mathematical Physics.

[7]  Pierre Kornprobst,et al.  Can the Nonlocal Characterization of Sobolev Spaces by Bourgain et al. Be Useful for Solving Variational Problems? , 2009, SIAM J. Numer. Anal..

[8]  Hoai-Minh Nguyen Further characterizations of Sobolev spaces , 2008 .

[9]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[10]  Augusto C. Ponce,et al.  A new approach to Sobolev spaces and connections to $\mathbf\Gamma$-convergence , 2004 .

[11]  Jean-Michel Morel,et al.  Image Denoising Methods. A New Nonlocal Principle , 2010, SIAM Rev..

[12]  L. Evans Measure theory and fine properties of functions , 1992 .

[13]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[14]  O. Savin,et al.  Nonlocal minimal surfaces , 2009, 0905.1183.

[15]  H. Brezis,et al.  The BBM formula revisited , 2016, 1606.05518.

[16]  L. Caffarelli,et al.  Uniform estimates and limiting arguments for nonlocal minimal surfaces , 2011 .

[17]  Jean-Michel Morel,et al.  Neighborhood filters and PDE’s , 2006, Numerische Mathematik.

[18]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[19]  Daniel Spector Characterization of Sobolev and BV Spaces , 2011 .

[20]  Х Брезис,et al.  Как распознать постоянные функции. Связь с пространствами Соболева@@@How to recognize constant functions. Connections with Sobolev spaces , 2002 .

[21]  Andy M. Yip,et al.  Recent Developments in Total Variation Image Restoration , 2004 .

[22]  J. Bourgain,et al.  Another look at Sobolev spaces , 2001 .

[23]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[24]  I. Fonseca,et al.  A few remarks on variational models for denoising , 2014 .

[25]  Hoai-Minh Nguyen Some inequalities related to Sobolev norms , 2011 .

[26]  Hoai-Minh Nguyen Estimates for the topological degree and related topics , 2014 .

[27]  Gianni Dal Maso,et al.  An Introduction to [gamma]-convergence , 1993 .

[28]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[29]  Ali Haddad,et al.  An improvement of Rudin–Osher–Fatemi model , 2007 .

[30]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[31]  Stanley Osher,et al.  Deblurring and Denoising of Images by Nonlocal Functionals , 2005, Multiscale Model. Simul..

[32]  L. Ambrosio,et al.  BMO‐Type Norms Related to the Perimeter of Sets , 2014, 1407.2023.

[33]  Frédo Durand,et al.  Bilateral Filtering: Theory and Applications , 2009, Found. Trends Comput. Graph. Vis..

[34]  S. M. Steve SUSAN - a new approach to low level image processing , 1997 .

[35]  E. Valdinoci,et al.  Nonlocal Diffusion and Applications , 2015, 1504.08292.

[36]  D. M. Hutton,et al.  Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation , 2010 .

[37]  Petru Mironescu,et al.  Limiting embedding theorems forWs,p whens ↑ 1 and applications , 2002 .

[38]  Hoai-Minh Nguyen Gamma-convergence, Sobolev norms, and BV functions , 2011 .

[39]  L. Ambrosio,et al.  Gamma-convergence of nonlocal perimeter functionals , 2010, 1007.3770.

[40]  Hoai-Minh Nguyen Some new characterizations of Sobolev spaces , 2006 .

[41]  S. Osher,et al.  Image restoration: Total variation, wavelet frames, and beyond , 2012 .

[42]  G. Leoni,et al.  Corrigendum to “Characterization of Sobolev and BV spaces” [J. Funct. Anal. 261 (10) (2011) 2926–2958] , 2014 .

[43]  Leonid P. Yaroslavsky,et al.  Digital Picture Processing , 1985 .

[44]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[45]  Murray Eden,et al.  Fundamentals of Digital Optics , 1996 .

[46]  Jean-Michel Morel,et al.  Non-Local Means Denoising , 2011, Image Process. Line.

[47]  Jean Van Schaftingen,et al.  Set transformations, symmetrizations and isoperimetric inequalities , 2004 .

[48]  H. Brezis New approximations of the total variation and filters in Imaging , 2015 .

[49]  Guy Gilboa,et al.  Nonlocal Linear Image Regularization and Supervised Segmentation , 2007, Multiscale Model. Simul..

[50]  Leonid P. Yaroslavsky,et al.  Digital Picture Processing: An Introduction , 1985 .

[51]  H. Brezis,et al.  Two subtle convex nonlocal approximations of the BV-norm , 2016 .

[52]  Hoai-Minh Nguyen Γ-convergence and Sobolev norms , 2007 .

[53]  Andrea Braides Γ-convergence for beginners , 2002 .

[54]  H. Brezis,et al.  Non-convex, non-local functionals converging to the total variation , 2017 .

[55]  J. Bourgain,et al.  A new characterization of Sobolev spaces , 2006 .

[56]  H. Brezis,et al.  On a new class of functions related to VMO , 2011 .