Efficient calculation of SAMPL4 hydration free energies using OMEGA, SZYBKI, QUACPAC, and Zap TK

Several submissions for the SAMPL4 hydration free energy set were calculated using OpenEye tools, including many that were among the top performing submissions. All of our best submissions used AM1BCC charges and Poisson–Boltzmann solvation. Three submissions used a single conformer for calculating the hydration free energy and all performed very well with mean unsigned errors ranging from 0.94 to 1.08 kcal/mol. These calculations were very fast, only requiring 0.5–2.0 s per molecule. We observed that our two single-conformer methodologies have different types of failure cases and that these differences could be exploited for determining when the methods are likely to have substantial errors.

[1]  David L Mobley,et al.  Small molecule hydration free energies in explicit solvent: An extensive test of fixed-charge atomistic simulations. , 2009, Journal of chemical theory and computation.

[2]  A. Geoffrey Skillman SAMPL3: blinded prediction of host–guest binding affinities, hydration free energies, and trypsin inhibitors , 2012, Journal of Computer-Aided Molecular Design.

[3]  Araz Jakalian,et al.  Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: I. Method , 2000 .

[4]  David L Mobley,et al.  Predicting small-molecule solvation free energies: an informal blind test for computational chemistry. , 2008, Journal of medicinal chemistry.

[5]  Thomas A. Halgren,et al.  Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules , 1996, J. Comput. Chem..

[6]  Anthony Nicholls,et al.  The SAMP1 solvation challenge: further lessons regarding the pitfalls of parametrization. , 2009, The journal of physical chemistry. B.

[7]  Donald G Truhlar,et al.  Charge Model 4 and Intramolecular Charge Polarization. , 2007, Journal of chemical theory and computation.

[8]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[9]  David L. Mobley,et al.  Blind prediction of solvation free energies from the SAMPL4 challenge , 2014, Journal of Computer-Aided Molecular Design.

[10]  J. Guthrie,et al.  A blind challenge for computational solvation free energies: introduction and overview. , 2009, The journal of physical chemistry. B.

[11]  Christopher I. Bayly,et al.  Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: II. Parameterization and validation , 2002, J. Comput. Chem..

[12]  J. Andrew Grant,et al.  SAMPL2 and continuum modeling , 2010, J. Comput. Aided Mol. Des..

[13]  J. Andrew Grant,et al.  A smooth permittivity function for Poisson–Boltzmann solvation methods , 2001, J. Comput. Chem..

[14]  Anthony Nicholls,et al.  Analysis of SM8 and Zap TK calculations and their geometric sensitivity , 2010, J. Comput. Aided Mol. Des..

[15]  Matthew T. Geballe,et al.  The SAMPL3 blind prediction challenge: transfer energy overview , 2012, Journal of Computer-Aided Molecular Design.

[16]  Shuai Liu,et al.  Blind prediction of HIV integrase binding from the SAMPL4 challenge , 2014, Journal of Computer-Aided Molecular Design.

[17]  Thomas A. Halgren,et al.  Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular. interactions , 1996, J. Comput. Chem..

[18]  Thomas A. Halgren MMFF VI. MMFF94s option for energy minimization studies , 1999, J. Comput. Chem..

[19]  Thomas A. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[20]  Anthony Nicholls,et al.  SAMPL2 challenge: prediction of solvation energies and tautomer ratios , 2010, J. Comput. Aided Mol. Des..

[21]  Lars Sandberg,et al.  Predicting hydration free energies with chemical accuracy: the SAMPL4 challenge , 2014, Journal of Computer-Aided Molecular Design.

[22]  T. Halgren MMFF VI. MMFF94s option for energy minimization studies , 1999, J. Comput. Chem..

[23]  Benjamin A. Ellingson,et al.  Conformer Generation with OMEGA: Algorithm and Validation Using High Quality Structures from the Protein Databank and Cambridge Structural Database , 2010, J. Chem. Inf. Model..

[24]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[25]  J. Peter Guthrie,et al.  SAMPL4, a blind challenge for computational solvation free energies: the compounds considered , 2014, Journal of Computer-Aided Molecular Design.

[26]  Thomas A. Halgren,et al.  Merck molecular force field. IV. conformational energies and geometries for MMFF94 , 1996, J. Comput. Chem..

[27]  Thomas A. Halgren Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94 , 1996, J. Comput. Chem..

[28]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[29]  Anthony Nicholls,et al.  The SAMPL2 blind prediction challenge: introduction and overview , 2010, J. Comput. Aided Mol. Des..