Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications

Abstract Contact electrification is coupled with electrostatic induction in developing triboelectric nanogenerator as a new energy technology. The triboelectric nanogenerator has two basic operating modes that can be used to harvest a variety of mechanical energy. It provides not only a viable means of powering portable and wearable electronics, but also demonstrates a possible route towards power generation in large scale. This paper makes a comprehensive review on fundamentals, operating modes, device design and performance enhancement of this newly emerged technology.

[1]  Bartosz A Grzybowski,et al.  A tool for studying contact electrification in systems comprising metals and insulating polymers. , 2003, Analytical chemistry.

[2]  Adnan Harb,et al.  Energy harvesting: State-of-the-art , 2011 .

[3]  Zhong Lin Wang,et al.  Radial-arrayed rotary electrification for high performance triboelectric generator , 2014, Nature Communications.

[4]  Simiao Niu,et al.  Manipulating nanoscale contact electrification by an applied electric field. , 2014, Nano letters.

[5]  G.S.P. Castle,et al.  Contact charging between insulators , 1997 .

[6]  J. A. Hoffer,et al.  Biomechanical Energy Harvesting: Generating Electricity During Walking with Minimal User Effort , 2008, Science.

[7]  Zhong Lin Wang,et al.  Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. , 2013, ACS nano.

[8]  Bernard H. Stark,et al.  Mems inertial power generators for biomedical applications , 2006 .

[9]  C. B. Duke,et al.  Contact electrification of polymers: A quantitative model , 1978 .

[10]  Saibal Roy,et al.  A micro electromagnetic generator for vibration energy harvesting , 2007 .

[11]  Timothy C. Green,et al.  Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices , 2008, Proceedings of the IEEE.

[12]  Taeseung D. Yoo,et al.  Generating Electricity While Walking with Loads , 2022 .

[13]  B. E. Springett,et al.  Physics of electrophotography , 1993 .

[14]  D. K. Davies,et al.  Charge generation on dielectric surfaces , 1969 .

[15]  G. Zhu,et al.  A Shape‐Adaptive Thin‐Film‐Based Approach for 50% High‐Efficiency Energy Generation Through Micro‐Grating Sliding Electrification , 2014, Advanced materials.

[16]  Z. Wang Self‐Powered Nanosensors and Nanosystems , 2012, Advanced materials.

[17]  Jun Chen,et al.  Harmonic‐Resonator‐Based Triboelectric Nanogenerator as a Sustainable Power Source and a Self‐Powered Active Vibration Sensor , 2013, Advanced materials.

[18]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[19]  B. A. Kwetkus PARTICLE TRIBOELECTRIFICATION AND ITS USE IN THE ELECTROSTATIC SEPARATION PROCESS , 1998 .

[20]  Zhong Lin Wang,et al.  Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. , 2013, Nano letters.

[21]  Zhong Lin Wang,et al.  In situ quantitative study of nanoscale triboelectrification and patterning. , 2013, Nano letters.

[22]  Joseph A. Paradiso,et al.  Energy scavenging for mobile and wireless electronics , 2005, IEEE Pervasive Computing.

[23]  George M. Whitesides,et al.  Electrostatic self-assembly of macroscopic crystals using contact electrification , 2003, Nature materials.

[24]  T. Thompson Miner , 2014 .

[25]  Zhong Lin Wang,et al.  Flexible triboelectric generator , 2012 .

[26]  Yannan Xie,et al.  Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion. , 2014, ACS nano.

[27]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[28]  Siak Piang Lim,et al.  Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications , 2004 .

[29]  Caofeng Pan,et al.  Triboelectric-generator-driven pulse electrodeposition for micropatterning. , 2012, Nano letters.

[30]  Arthur F. Diaz,et al.  Contact charging of organic materials: Ion vs. electron transfer , 1993, IBM J. Res. Dev..

[31]  S. Priya Advances in energy harvesting using low profile piezoelectric transducers , 2007 .

[32]  Zhong Lin Wang,et al.  Linear-grating triboelectric generator based on sliding electrification. , 2013, Nano letters.

[33]  Frank Simon,et al.  Polymer tribo-electric charging: dependence on thermodynamic surface properties and relative humidity , 2003 .

[34]  Jun Chen,et al.  Cylindrical rotating triboelectric nanogenerator. , 2013, ACS nano.

[35]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[36]  Guang Zhu,et al.  Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators , 2014, Nano Research.

[37]  Mihai Lungu,et al.  Electrical separation of plastic materials using the triboelectric effect , 2004 .

[38]  Y. Tai,et al.  Iop Publishing Journal of Micromechanics and Microengineering Parylene-based Electret Power Generators , 2022 .

[39]  George M Whitesides,et al.  Ionic electrets: electrostatic charging of surfaces by transferring mobile ions upon contact. , 2007, Journal of the American Chemical Society.