The signal of mantle anisotropy in the coupling of normal modes

We investigate whether the coupling of normal mode (NM) multiplets can help us constrain mantle anisotropy. We first derive explicit expressions of the generalized structure coefficients of coupled modes in terms of elastic coefficients, including the Love parameters describing radial anisotropy and the parameters describing azimuthal anisotropy (Jc, Js, Kc, Ks, Mc, Ms, Bc, Bs, Gc, Gs, Ec, Es, Hc, Hs, Dc and Ds). We detail the selection rules that describe which modes can couple together and which elastic parameters govern their coupling. We then focus on modes of type 0Sl-0Tl+1 and determine whether they can be used to constrain mantle anisotropy. We show that they are sensitive to six elastic parameters describing azimuthal anisotropy, in addition to the two shear-wave elastic parameters L and N (i.e. VSV and VSH). We find that neither isotropic nor radially anisotropic mantle models can fully explain the observed degree two signal. We show that the NM signal that remains after correction for the effect of the crust and mantle radial anisotropy can be explained by the presence of azimuthal anisotropy in the upper mantle. Although the data favour locating azimuthal anisotropy below 400km, its depth extent and distribution is still not well constrained by the data. Consideration of NM coupling can thus help constrain azimuthal anisotropy in the mantle, but joint analyses with surface-wave phase velocities is needed to reduce the parameter trade-offs and improve our constraints on the individual elastic parameters and the depth location of the azimuthal anisotropy. © 2008 The Authors Journal compilation © 2008 RAS.

[1]  Gabi Laske,et al.  The Relative Behavior of Shear Velocity, Bulk Sound Speed, and Compressional Velocity in the Mantle: Implications for Chemical and Thermal Structure , 2013 .

[2]  Jennifer Andrews,et al.  Wide-band coupling of Earth's normal modes due to anisotropic inner core structure , 2008 .

[3]  E. Bozdağ,et al.  On crustal corrections in surface wave tomography , 2008 .

[4]  A. Dziewoński,et al.  Nonlinear Crustal Corrections for Normal-Mode Seismograms , 2007 .

[5]  F. Marone,et al.  Non-linear crustal corrections in high-resolution regional waveform seismic tomography , 2007 .

[6]  Federica Marone,et al.  The depth distribution of azimuthal anisotropy in the continental upper mantle , 2007, Nature.

[7]  Jeroen Tromp,et al.  Theoretical and numerical investigations of global and regional seismic wave propagation in weakly anisotropic earth models , 2007 .

[8]  B. Romanowicz,et al.  A Three-Dimensional Radially-Anisotropic Model of Shear Velocity in the Whole Mantle , 2006 .

[9]  R. Snieder,et al.  How do we understand and visualize uncertainty , 2006 .

[10]  H. Oda An attempt to estimate isotropic and anisotropic lateral structure of the Earth by spectral inversion incorporating mixed coupling , 2005 .

[11]  J. Trampert,et al.  Probability density functions for radial anisotropy from fundamental mode surface wave data and the Neighbourhood Algorithm , 2004 .

[12]  Jeannot Trampert,et al.  Using probabilistic seismic tomography to test mantle velocity–density relationships , 2003 .

[13]  J. Trampert,et al.  Global anisotropic phase velocity maps for fundamental mode surface waves between 40 and 150 s , 2003 .

[14]  B. Romanowicz,et al.  Global anisotropy and the thickness of continents , 2003, Nature.

[15]  Jeannot Trampert,et al.  Robust Normal Mode Constraints on Inner-Core Anisotropy from Model Space Search , 2003, Science.

[16]  Joseph S. Resovsky,et al.  P and S tomography using normal-mode and surface waves data with a neighbourhood algorithm , 2002 .

[17]  J. Trampert,et al.  Global Azimuthal Anisotropy in the Transition Zone , 2002, Science.

[18]  L. Boschi,et al.  New images of the Earth's upper mantle from measurements of surface wave phase velocity anomalies , 2002 .

[19]  G. Barruol,et al.  Mid-mantle deformation inferred from seismic anisotropy , 2002, Nature.

[20]  John H. Woodhouse,et al.  Theoretical free-oscillation spectra: the importance of wide band coupling , 2001 .

[21]  T. Duffy,et al.  Strength and elasticity of ringwoodite at upper mantle pressures , 2001 .

[22]  Barbara Romanowicz,et al.  The three‐dimensional shear velocity structure of the mantle from the inversion of body, surface and higher‐mode waveforms , 2000 .

[23]  J. Woodhouse,et al.  Complex Shear Wave Velocity Structure Imaged Beneath Africa and Iceland. , 1999, Science.

[24]  M. Sambridge Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble , 1999 .

[25]  J. Tromp,et al.  Normal-mode and free-Air gravity constraints on lateral variations in velocity and density of Earth's mantle , 1999, Science.

[26]  M. Sambridge Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space , 1999 .

[27]  Joseph S. Resovsky,et al.  A degree 8 mantle shear velocity model from normal mode observations below 3 mHz , 1999 .

[28]  J. Tromp,et al.  Theoretical Global Seismology , 1998 .

[29]  B. Kennett,et al.  Joint seismic tomography for bulk sound and shear wave speed in the Earth's mantle , 1998 .

[30]  J. Trampert Global seismic tomography: the inverse problem and beyond , 1998 .

[31]  Joseph S. Resovsky,et al.  New and refined constraints on three‐dimensional Earth structure from normal modes below 3 mHz , 1998 .

[32]  Gabi Laske,et al.  CRUST 5.1: A global crustal model at 5° × 5° , 1998 .

[33]  Jeffrey Park Free oscillations in an anisotropic earth: path-integral asymptotics , 1997 .

[34]  Wei-jia Su,et al.  Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle , 1997 .

[35]  K. Fischer,et al.  Mantle anisotropy beneath northwest Pacific subduction zones , 1996 .

[36]  G. Laske,et al.  A shear - velocity model of the mantle , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[37]  P. Silver,et al.  Constraints from seismic anisotropy on the nature of the lowermost mantle , 1996, Nature.

[38]  Joseph S. Resovsky,et al.  Constraining odd‐degree earth structure with coupled free‐oscillations , 1995 .

[39]  Barbara Romanowicz,et al.  Comparison of global waveform inversions with and without considering cross-branch modal coupling , 1995 .

[40]  Wei-jia Su,et al.  Degree 12 model of shear velocity heterogeneity in the mantle , 1994 .

[41]  Jeffrey Park The sensitivity of seismic free oscillations to upper mantle anisotropy 1. Zonal symmetry , 1993 .

[42]  Jeffrey Park,et al.  Upper mantle anisotropy and coupled-mode long-period surface waves , 1993 .

[43]  A. Milev,et al.  Global patterns of azimuthal anisotropy and deformations in the continental mantle , 1992 .

[44]  Jean-Paul Montagner,et al.  Global upper mantle tomography of seismic velocities and anisotropies , 1991 .

[45]  Paul G. Silver,et al.  Shear wave splitting and subcontinental mantle deformation , 1991 .

[46]  T. Tanimoto,et al.  Global anisotropy in the upper mantle inferred from the regionalization of phase velocities , 1990 .

[47]  J. Montagner,et al.  Vectorial tomography—II. Application to the Indian Ocean , 1988 .

[48]  S. Karato The role of recrystallization in the preferred orientation of olivine , 1988 .

[49]  G. Masters,et al.  Observations of anomalous splitting and their interpretation in terms of aspherical structure , 1986 .

[50]  E. Mochizuki The Free Oscillations of an Anisotropic and Heterogeneous Earth , 1986 .

[51]  David D. Jackson,et al.  A Bayesian approach to nonlinear inversion , 1985 .

[52]  J. Woodhouse The coupling and attenuation of nearly resonant multiplets in the Earth's free oscillation spectrum , 1980 .

[53]  D. Jackson The use of a priori data to resolve non‐uniqueness in linear inversion , 1979 .

[54]  F. A. Dahlen,et al.  The Effect of A General Aspherical Perturbation on the Free Oscillations of the Earth , 1978 .

[55]  D. Forsyth Reply to ‘A Comment on “The Early Structural Evolution and Anisotropy of the Oceanic Upper Mantle”' , 1975 .

[56]  Robert A. Phinney,et al.  Representation of the Elastic ‐ Gravitational Excitation of a Spherical Earth Model by Generalized Spherical Harmonics , 1973 .

[57]  D. Helmberger,et al.  Shear velocities at the base of the mantle from observations of S and ScS , 1973 .

[58]  H. H. Hess,et al.  Seismic Anisotropy of the Uppermost Mantle under Oceans , 1964, Nature.

[59]  Don L. Anderson,et al.  Elastic wave propagation in layered anisotropic media , 1961 .

[60]  J. Trampert,et al.  Probability density functions for radial anisotropy: implications for the upper 1200 km of the mantle , 2004 .

[61]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[62]  Naoshi Hirata,et al.  Generalized least-squares solutions to quasi-linear inverse problems with a priori information. , 1982 .