Necessary convergence conditions for upwind schemes in the two‐dimensional case

This paper considers nine-point difference schemes for a two-dimensional boundary value singular perturbation problem without turning points and parabolic boundary layers. Necessary conditions are given for the uniform convergence (in the sense of the maximum norm) of a scheme. Using these conditions, several widely used schemes are analysed. It is shown that some common schemes are not uniformly convergent in ϵ. and that in some cases we are able to compute uniquely free parameters in the scheme. Some remarks on the treatment of a problem with a parabolic boundary layer are given.

[1]  Discrete Weighted Mean Approximation of a Model Convection-Diffusion Equation , 1982 .

[2]  Masahisa Tabata,et al.  On a conservation upwind finite element scheme for convective diffusion equations , 1981 .

[3]  O. C. Zienkiewicz,et al.  An ‘upwind’ finite element scheme for two‐dimensional convective transport equation , 1977 .

[4]  Wil H. A. Schilders,et al.  Uniform Numerical Methods for Problems with Initial and Boundary Layers , 1980 .

[5]  K. Morton,et al.  Optimal finite element methods for diffusion-convection problems , 1980 .

[6]  L. Tobiska Diskretisierungsverfahren zur Lösung singulär gestörter Randwertprobleme , 1983 .

[7]  Gisbert Stoyan,et al.  Monotone Difference Schemes for Diffusion‐Convection Problems , 1979 .

[8]  A. R. Mitchell,et al.  Upwinding by Petron-Galerkin methods in convection-diffusion problems , 1980 .

[9]  P. S. Huyakorn,et al.  Solution of steady-state, convective transport equation using an upwind finite element scheme , 1977 .

[10]  Jens Lorenz,et al.  An analysis of the petrov—galerkin finite element method , 1978 .

[11]  G. Payre,et al.  An ‘upwind’ finite element method via numerical intergration , 1982 .

[12]  De Groen A finite element method with a large mesh-width for a stiff two-point boundary value problem , 1981 .

[13]  P. Hemker,et al.  Error bounds for exponentially fitted galerkin methods applied to stiff two-point boundary value problems , 1978 .

[14]  O. C. Zienkiewicz,et al.  A note on upwinding and anisotropic balancing dissipation in finite element approximations to convective diffusion problems , 1980 .

[15]  G. D. Raithby,et al.  Skew upstream differencing schemes for problems involving fluid flow , 1976 .

[16]  O. Axelsson,et al.  Stability and Error Estimates of Galerkin Finite Element Approximations for Convection—Diffusion Equations , 1981 .

[17]  Jacques Periaux,et al.  A finite element approximation of Navier-Stokes equations for incompressible viscous fluids. Iterative methods of solution , 1980 .

[18]  Uno Nävert,et al.  An Analysis of some Finite Element Methods for Advection-Diffusion Problems , 1981 .

[19]  Quasioptimal Finite Element Approximations of first Order Hyperbolic and of Convection-Dominated Convection-Diffusion Equations , 1981 .

[20]  A. Segal Aspects of Numerical Methods for Elliptic Singular Perturbation Problems , 1982 .