Time series prediction with ensemble models applied to the CATS benchmark

We describe the use of ensemble methods to build models for time series prediction. Our approach extends the classical ensemble methods for neural networks by using several different model architectures. We further suggest an iterated prediction procedure to select the final ensemble members.

[1]  Anders Krogh,et al.  Neural Network Ensembles, Cross Validation, and Active Learning , 1994, NIPS.

[2]  D. Broomhead,et al.  Takens embedding theorems for forced and stochastic systems , 1997 .

[3]  Christian Igel,et al.  Improving the Rprop Learning Algorithm , 2000 .

[4]  Erkki Oja,et al.  Time series prediction competition: The CATS benchmark , 2007, Neurocomputing.

[5]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[6]  Martin A. Riedmiller,et al.  A direct adaptive method for faster backpropagation learning: the RPROP algorithm , 1993, IEEE International Conference on Neural Networks.

[7]  Nathan Intrator,et al.  Optimal ensemble averaging of neural networks , 1997 .

[8]  Maciej Ogorzalek,et al.  Detecting correlation in stock market , 2004 .

[9]  Tom Heskes,et al.  Clustering ensembles of neural network models , 2003, Neural Networks.

[10]  L. Cooper,et al.  When Networks Disagree: Ensemble Methods for Hybrid Neural Networks , 1992 .

[11]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[12]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[13]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  A. Nebot,et al.  Multi-resolution time-series prediction using fuzzy inductive reasoning , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[16]  Jouko Lampinen,et al.  Time series prediction by Kalman smoother with cross-validated noise density , 2004 .

[17]  F. Takens Detecting strange attractors in turbulence , 1981 .

[18]  James McNames,et al.  A Nearest Trajectory Strategy for Time Series Prediction , 2000 .

[19]  Tao Xiong,et al.  A combined SVM and LDA approach for classification , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[20]  Lars Kai Hansen,et al.  Neural Network Ensembles , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Nathan Intrator,et al.  Automatic model selection in a hybrid perceptron/radial network , 2002, Inf. Fusion.

[22]  A. Krogh,et al.  Statistical mechanics of ensemble learning , 1997 .

[23]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[24]  Giorgio Valentini,et al.  Bias-Variance Analysis and Ensembles of SVM , 2002, Multiple Classifier Systems.