A forward equation for barrier options under the Brunick & Shreve Markovian projection
暂无分享,去创建一个
Christoph Reisinger | Ben Hambly | Matthieu Mariapragassam | C. Reisinger | B. Hambly | Matthieu Mariapragassam
[1] René Carmona,et al. Local volatility dynamic models , 2009, Finance Stochastics.
[2] O. Pironneau,et al. Computational Methods for Option Pricing (Frontiers in Applied Mathematics) (Frontiers in Applied Mathematics 30) , 2005 .
[3] Xinming Liu,et al. Local Volatility Model , 2010 .
[4] Uniqueness in law for a class of degenerate diffusions with continuous covariance , 2011, 1105.1821.
[5] P. Carr,et al. Forward Evolution Equations for Knock-Out Options , 2007 .
[6] Julien Guyon. Path-Dependent Volatility , 2014 .
[7] Peter Carr,et al. A class of Lévy process models with almost exact calibration to both barrier and vanilla FX options , 2010 .
[8] M. Forde,et al. Hitting Times, Occupation Times, Trivariate Laws and the Forward Kolmogorov Equation for a One-Dimensional Diffusion with Memory , 2013, Advances in Applied Probability.
[9] H. Engl,et al. Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates , 2005 .
[10] L. Rogers,et al. Diffusions, Markov processes, and martingales , 1979 .
[11] Vladimir V. Piterbarg. Markovian Projection Method for Volatility Calibration , 2006 .
[12] Yves Achdou,et al. Computational Methods for Option Pricing (Frontiers in Applied Mathematics) (Frontiers in Applied Mathematics 30) , 2005 .
[13] Bruno Dupire,et al. Functional Itô Calculus , 2009 .
[14] B. Fornberg. Generation of finite difference formulas on arbitrarily spaced grids , 1988 .
[15] Pierre Henry-Labordere,et al. The Smile Calibration Problem Solved , 2011 .
[16] Gerard P. Brunick,et al. Mimicking an Itô process by a solution of a stochastic differential equation , 2010, 1011.0111.
[17] W. Rudin. Principles of mathematical analysis , 1964 .
[18] S. Shreve. Stochastic Calculus for Finance II: Continuous-Time Models , 2010 .
[19] Jan Oblój,et al. Robust pricing and hedging of double no-touch options , 2009, Finance Stochastics.
[20] I. Gyöngy. Mimicking the one-dimensional marginal distributions of processes having an ito differential , 1986 .
[21] Peter A. Forsyth,et al. Analysis of the stability of the linear boundary condition for the Black–Scholes equation , 2004 .
[22] Olivier Pironneau. Dupire-like identities for complex options , 2007 .
[23] Jim Gatheral. The Volatility Surface: A Practitioner's Guide , 2006 .
[24] A. Pascucci,et al. Path dependent volatility , 2008 .
[25] R. Aebi. Ito's Formula for Non-Smooth Functions , 2005 .
[26] J. Hull. Options, Futures, and Other Derivatives , 1989 .
[27] Stéphane Crépey,et al. TIKHONOV REGULARIZATION , 2008 .
[28] M. Grigoriu. Stochastic Calculus: Applications in Science and Engineering , 2002 .
[29] On the Markovian projection in the Brunick-Shreve mimicking result , 2014 .