Interval judgments and Euclidean centers

We formulated the problem of finding a priority vector from an interval reciprocal matrix as a Euclidean center problem. The interesting result is that this formulation always has a solution and always provides knowledge about the feasible region. The sign of the objective function of the Euclidean center formulation predicts the existence of a feasible solution that satisfies the constraints given by the interval reciprocal matrix. We showed that if the Euclidean center objective function is positive, there are multiple plausible solutions, if it is negative, there no feasible solutions, and if it is equal to zero, the feasible region consists of a single point.

[1]  T. Saaty Axiomatic foundation of the analytic hierarchy process , 1986 .

[2]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[3]  Ami Arbel,et al.  Approximate articulation of preference and priority derivation , 1989 .

[4]  Ami Arbel An interior multiobjective linear programming algorithm , 1993, Comput. Oper. Res..

[5]  James E. Falk,et al.  A method of euclidean centers , 1996, Comput. Oper. Res..

[6]  P. Hansen,et al.  Systems of Cities and Facility Location , 2002 .

[7]  J. B. Rosen The gradient projection method for nonlinear programming: Part II , 1961 .

[8]  Luis G. Vargas,et al.  Preference simulation and preference programming: robustness issues in priority derivation , 1993 .

[9]  Luis G. Vargas,et al.  Inconsistency and rank preservation , 1984 .

[10]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[11]  P. Korhonen,et al.  Using aspiration levels in an interactive interior multiobjective linear programming algorithm , 1996 .

[12]  Paul D. Domich,et al.  Algorithmic Enhancements to the Method of Centers for Linear Programming Problems , 1989, INFORMS J. Comput..

[13]  G. Sonnevend An "analytical centre" for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming , 1986 .

[14]  M. Bohanec,et al.  The Analytic Hierarchy Process , 2004 .

[15]  Luis G. Vargas,et al.  Uncertainty and rank order in the analytic hierarchy process , 1987 .

[16]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[17]  George B. Dantzig,et al.  Linear Programming 1: Introduction , 1997 .