A Case Based Reasoning Framework for Service Selection and Adaptation in Mobile Networks

Service selection and adaptation is of paramount importance in contemporary mobile networks. Many diverse parameters should be taken into account (e.g., user context, terminal and network capabilities) for the selection of the appropriate service or the required service adaptations. In this paper we propose a framework for service selection and adaptation. A case based reasoning system (CBRS) is used to select the most appropriate service. Services are modelled using formal semantics. The CBRS retrieves the most appropriate service by comparing previous cases with the current service request. This comparison is performed using similarity metrics. We elaborate on the different aspects of the discussed architecture and provide indicative examples to illustrate the versatility of the proposed scheme.

[1]  Qusay H. Mahmoud,et al.  A framework for automatic and dynamic composition of personalized Web services , 2005, 19th International Conference on Advanced Information Networking and Applications (AINA'05) Volume 1 (AINA papers).

[2]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[3]  Dhavalkumar Thakker,et al.  Semantic-Driven Matchmaking and Composition of Web Services Using Case-Based Reasoning , 2007, ECOWS 2007.

[4]  Raymond Y. K. Lau,et al.  Mining Fuzzy Domain Ontology from Textual Databases , 2007, IEEE/WIC/ACM International Conference on Web Intelligence (WI'07).

[5]  Thomas L. Griffiths,et al.  Hierarchical Topic Models and the Nested Chinese Restaurant Process , 2003, NIPS.

[6]  Junliang Chen,et al.  Semantic Web Enabled VHE for 3 rd Generation Telecommunications , 2005, ICCNMC.

[7]  Steffen Staab,et al.  Ontology Learning for the Semantic Web , 2002, IEEE Intell. Syst..

[8]  Gerhard Paass,et al.  Learning Prototype Ontologies by Hierachical Latent Semantic Analysis , 2004, LWA.

[9]  Stathes Hadjiefthymiades,et al.  Semantic web service discovery: methods, algorithms and tools , 2007 .

[10]  Chen Junliang,et al.  Semantic Web enabled VHE for 3/sup rd/ generation telecommunications , 2005, Fourth Annual ACIS International Conference on Computer and Information Science (ICIS'05).

[11]  Jorge Cardoso,et al.  Semantic Web Services: Theory, Tools and Applications , 2007 .

[12]  Kris Popat,et al.  A Hierarchical Model for Clustering and Categorising Documents , 2002, ECIR.

[13]  Agnar Aamodt,et al.  Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches , 1994, AI Commun..

[14]  George A. Vouros,et al.  Mapping Ontologies Elements using Features in a Latent Space , 2007 .

[15]  George A. Vouros,et al.  Discovering Subsumption Hierarchies of Ontology Concepts from Text Corpora , 2007 .

[16]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[17]  Marta Sabou,et al.  Learning web service ontologies: an automatic extraction method and its evaluation , 2005 .

[18]  Marti A. Hearst Automatic Acquisition of Hyponyms from Large Text Corpora , 1992, COLING.

[19]  Pedro A. González-Calero,et al.  JColibri: An Object-Oriented Framework for Building CBR Systems , 2004, ECCBR.

[20]  Junliang Chen,et al.  Semantic Web Enabled VHE for 3rd Generation Telecommunications , 2005, ACIS-ICIS.

[21]  Wlodzimierz Drabent,et al.  Extending XML Query Language Xcerpt by Ontology Queries , 2007 .

[22]  George A. Vouros,et al.  SEMA: Results for the Ontology Alignment Contest OAEI 2007 , 2007, OM.

[23]  Frédéric Delmond,et al.  The user profile for the virtual home environment , 2003, IEEE Commun. Mag..

[24]  George A. Vouros,et al.  A Name-Matching Algorithm for Supporting Ontology Enrichment , 2004, SETN.