FPGA Implementation of A Graph Cut Algorithm For Stereo Vision

[1]  Hailin Jin,et al.  Stereo matching with nonparametric smoothness priors in feature space , 2009, CVPR.

[2]  Andrew W. Fitzgibbon,et al.  Global stereo reconstruction under second order smoothness priors , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Tsutomu Maruyama,et al.  An acceleration of a graph cut segmentation with FPGA , 2012, 22nd International Conference on Field Programmable Logic and Applications (FPL).

[4]  Andrew V. Goldberg,et al.  A new approach to the maximum flow problem , 1986, STOC '86.

[5]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  P. J. Narayanan,et al.  CUDA cuts: Fast graph cuts on the GPU , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[7]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[8]  Ulrich Derigs,et al.  Implementing Goldberg's max-flow-algorithm — A computational investigation , 1989, ZOR Methods Model. Oper. Res..

[9]  Hailin Jin,et al.  Stereo matching with nonparametric smoothness priors in feature space , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.