Structural patterns of information cascades and their implications for dynamics and semantics

Information cascades are ubiquitous in both physical society and online social media, taking on large variations in structures, dynamics and semantics. Although the dynamics and semantics of information cascades have been studied, the structural patterns and their correlations with dynamics and semantics are largely unknown. Here we explore a large-scale dataset including $432$ million information cascades with explicit records of spreading traces, spreading behaviors, information content as well as user profiles. We find that the structural complexity of information cascades is far beyond the previous conjectures. We first propose a ten-dimensional metric to quantify the structural characteristics of information cascades, reflecting cascade size, silhouette, direction and activity aspects. We find that bimodal law governs majority of the metrics, information flows in cascades have four directions, and the self-loop number and average activity of cascades follows power law. We then analyze the high-order structural patterns of information cascades. Finally, we evaluate to what extent the structural features of information cascades can explain its dynamic patterns and semantics, and finally uncover some notable implications of structural patterns in information cascades. Our discoveries also provide a foundation for the microscopic mechanisms for information spreading, potentially leading to implications for cascade prediction and outlier detection.

[1]  Jure Leskovec,et al.  Do Cascades Recur? , 2016, WWW.

[2]  Jon M. Kleinberg,et al.  The structure of information pathways in a social communication network , 2008, KDD.

[3]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[4]  Jon Kleinberg,et al.  Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter , 2011, WWW.

[5]  Christos Faloutsos,et al.  Beyond Sigmoids: The NetTide Model for Social Network Growth, and Its Applications , 2016, KDD.

[6]  Brian D. Davison,et al.  Empirical study of topic modeling in Twitter , 2010, SOMA '10.

[7]  Zhiming Zheng,et al.  Exploring the Complex Pattern of Information Spreading in Online Blog Communities , 2015, PloS one.

[8]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[9]  Christos Faloutsos,et al.  Rise and fall patterns of information diffusion: model and implications , 2012, KDD.

[10]  Jure Leskovec,et al.  Patterns of temporal variation in online media , 2011, WSDM '11.

[11]  Jure Leskovec,et al.  The dynamics of viral marketing , 2005, EC '06.

[12]  Duncan J. Watts,et al.  Exploring Limits to Prediction in Complex Social Systems , 2016, WWW.

[13]  Duncan J. Watts,et al.  The Structural Virality of Online Diffusion , 2015, Manag. Sci..

[14]  Piet Van Mieghem,et al.  Epidemic processes in complex networks , 2014, ArXiv.

[15]  Shiqiang Yang,et al.  A Multiscale Survival Process for Modeling Human Activity Patterns , 2016, PloS one.

[16]  Jon M. Kleinberg,et al.  Tracing information flow on a global scale using Internet chain-letter data , 2008, Proceedings of the National Academy of Sciences.

[17]  Jure Leskovec,et al.  Global Diffusion via Cascading Invitations: Structure, Growth, and Homophily , 2015, WWW.

[18]  Rediet Abebe Can Cascades be Predicted? , 2014 .

[19]  Christos Faloutsos,et al.  Patterns of Cascading Behavior in Large Blog Graphs , 2007, SDM.

[20]  W. Kruskal,et al.  Use of Ranks in One-Criterion Variance Analysis , 1952 .

[21]  S. Ye Measuring message propagation and social influence on Twitter , 2013 .

[22]  Fei Wang,et al.  From Micro to Macro: Uncovering and Predicting Information Cascading Process with Behavioral Dynamics , 2015, 2015 IEEE International Conference on Data Mining.

[23]  Luis Gravano,et al.  k-Shape: Efficient and Accurate Clustering of Time Series , 2016, SGMD.

[24]  Jure Leskovec,et al.  The bursty dynamics of the Twitter information network , 2014, WWW.

[25]  David M. Blei,et al.  Probabilistic topic models , 2012, Commun. ACM.

[26]  Shyhtsun Felix Wu,et al.  Measuring message propagation and social influence on Twitter.com , 2010, Int. J. Commun. Networks Distributed Syst..

[27]  Daniel G. Goldstein,et al.  The structure of online diffusion networks , 2012, EC '12.

[28]  Shuang-Hong Yang,et al.  Large-scale high-precision topic modeling on twitter , 2014, KDD.

[29]  Eytan Adar,et al.  Implicit Structure and the Dynamics of Blogspace , 2004 .

[30]  Lada A. Adamic,et al.  The Anatomy of Large Facebook Cascades , 2013, ICWSM.

[31]  E. Rogers,et al.  Diffusion of innovations , 1964, Encyclopedia of Sport Management.