In-air spectral signatures of the Baltic Sea macrophytes and their statistical separability

Abstract Many macroalgal species potentially have distinctive spectral signatures detectable using remote sensing. In order to map the spatial distribution of these species, their spectral properties have to be quantified and statistical differences between species need to be assessed. In the present study, we collected a spectral library of the key benthic macrophyte species in the Baltic Sea area and presented the methodology that allows quantifying statistical differences between their reflectance spectra. The results indicate that three broad groups of algae—green, brown, and red algae—can be separated based on their optical signatures. In general, the between-species differences are too small to allow easy recognition of benthic algae based on their untransformed reflectance spectra. However, the distinctness of the studied species and taxa improves if standardized reflectance values are used. The best indicative spectral range was at 530 to 570 nm for the separation of species and of larger taxonomic units.

[1]  J. C. Price How unique are spectral signatures , 1994 .

[2]  Kalle Remm,et al.  An online calculator for spatial data and its applications , 2014 .

[3]  H. Nagendra Using remote sensing to assess biodiversity , 2001 .

[4]  Georg Martin,et al.  Gulf of Riga and Pärnu Bay , 2008 .

[5]  Tiit Kutser,et al.  Modeling spectral discrimination of Great Barrier Reef benthic communities by remote sensing instruments , 2003 .

[6]  Andrew D. Richardson,et al.  Spectral reflectance of the seagrasses: Thalassia testudinum, Halodule wrightii, Syringodium filiforme and five marine algae , 2007 .

[7]  Serge Andréfouët,et al.  Spectral reflectance of coral reef bottom-types worldwide and implications for coral reef remote sensing , 2003 .

[8]  Gabriela Hannach,et al.  SPECTRAL LIGHT ABSORPTION BY INTACT BLADES OF PORPHYRA ABBOTTAE (RHODOPHYTA): EFFECTS OF ENVIRONMENTAL FACTORS IN CULTURE 1 , 1989 .

[9]  Peter J Mumby,et al.  Biological and remote sensing perspectives of pigmentation in coral reef organisms. , 2002, Advances in marine biology.

[10]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[11]  D. Jupp,et al.  Mapping coral reef benthic substrates using hyperspectral space-borne images and spectral libraries , 2006 .

[12]  Lars Olof Björn,et al.  Plants as light traps , 1986 .

[13]  P. Mumby,et al.  The cost-effectiveness of remote sensing for tropical coastal resources assessment and management , 1999 .

[14]  J. Jaubert,et al.  Spectral discrimination of coral mortality states following a severe bleaching event , 2000 .

[15]  Trijntje Valerie Downes,et al.  Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables. , 2005, Applied optics.

[16]  David W. Aha,et al.  The omnipresence of case-based reasoning in science and application , 1998, Knowl. Based Syst..

[17]  T. Kutser,et al.  Assessment of the hyperspectral sensor CASI-2 for macroalgal discrimination on the Ría de Vigo coast (NW Spain) using field spectroscopy and modelled spectral libraries , 2013 .

[18]  Robert A. Leathers,et al.  Optical remote sensing of benthic habitats and bathymetry in coastal environments at Lee Stocking Island, Bahamas: A comparative spectral classification approach , 2003 .

[19]  J Barrett,et al.  Chlorophyll-protein complexes of brown algae: P700 reaction centre and light-harvesting complexes. , 1978, Ciba Foundation symposium.

[20]  Chuanmin Hu,et al.  Use of In Situ and Airborne Reflectance for Scaling-Up Spectral Discrimination of Coral Reef Macroalgae from Species to Communities , 2004 .

[21]  D. Stramski,et al.  An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea , 2004 .

[22]  J. Ramus,et al.  SEAWEED ANATOMY AND PHOTOSYNTHETIC PERFORMANCE: THE ECOLOGICAL SIGNIFICANCE OF LIGHT GUIGES, HETEROGENEOUS ABSORPTION AND MULTIPLE SCATTER 1 2 , 1978 .

[23]  André Morel,et al.  Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo , 1994 .

[24]  Jonne Kotta,et al.  Predicting Species Cover of Marine Macrophyte and Invertebrate Species Combining Hyperspectral Remote Sensing, Machine Learning and Regression Techniques , 2013, PloS one.

[25]  Celia M. Smith,et al.  Ecophysiological implications of the measurement of transmittance and reflectance of tropical macroalgae , 2006 .

[26]  Andrew R. Watkinson,et al.  Large‐scale ecology and hydrology: an introductory perspective from the editors of the Journal of Applied Ecology , 2000 .

[27]  B W Beadle,et al.  THE PREPARATION AND ABSORPTION SPECTRA OF FIVE PURE CAROTENOID PIGMENTS. , 1942, Plant physiology.

[28]  S. Fyfe,et al.  Spatial and temporal variation in spectral reflectance: Are seagrass species spectrally distinct? , 2003 .

[29]  Wojciech M. Klonowski,et al.  Shallow water substrate mapping using hyperspectral remote sensing , 2011 .

[30]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[31]  Limin Yang,et al.  An approach for mapping large-area impervious surfaces: synergistic use of Landsat-7 ETM+ and high spatial resolution imagery , 2003 .

[32]  W. Kruskal,et al.  Use of Ranks in One-Criterion Variance Analysis , 1952 .

[33]  Georg Martin,et al.  Feasibility of hyperspectral remote sensing for mapping benthic macroalgal cover in turbid coastal waters—a Baltic Sea case study , 2006 .

[34]  Sarah C. Goslee,et al.  Extending community ecology to landscapes , 2002 .

[35]  Omri Allouche,et al.  Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS) , 2006 .

[36]  Park S. Nobel,et al.  Physicochemical and Environmental Plant Physiology , 1991 .

[37]  L. R. Blinks,et al.  PHOTOSYNTHETIC ACTION SPECTRA OF MARINE ALGAE , 1950, The Journal of general physiology.

[38]  Olle Karlsson,et al.  Checklist of Baltic Sea Macro-species. Baltic Sea Environment Proceedings No. 130 , 2012 .

[39]  William C. Dennison,et al.  Effects of ultraviolet and photosynthetically active radiation on five seagrass species , 1996 .

[40]  Natascha Oppelt,et al.  Hyperspectral classification approaches for intertidal macroalgae habitat mapping: a case study in Heligoland , 2012 .

[41]  C. M. Smith,et al.  In vivo absorbance spectra and the ecophysiology of reef macroalgae , 1997, Coral Reefs.

[42]  E. Fry,et al.  Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. , 1997, Applied optics.

[43]  Kendall L. Carder,et al.  Change detection in shallow coral reef environments using Landsat 7 ETM+ data , 2001 .

[44]  Liming Jiang,et al.  Synergistic use of optical and InSAR data for urban impervious surface mapping: a case study in Hong Kong , 2009 .

[45]  D. Rogers,et al.  The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? , 2004 .

[46]  K. Remm Case-based predictions for species and habitat mapping , 2004 .

[47]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .