Deterministic and Probabilistic Q-Ball Tractography: from Diffusion to Sharp Fiber Distributions

We propose a deterministic and a probabilistic extension of classical diffusion tensor imaging (DTI) tractography algorithms based on a sharp fi ber orientation distribution function (ODF) reconstruction from Q-Ball Imaging (QBI). An importa nt contribution of the paper is the integration of some of the latest state-of-the-art high ang ular resolution diffusion imaging (HARDI) data processing methods to obtain accurate and convincing r esults of complex fiber bundles with crossing, fanning and branching configurations. First, we d evelop a new deconvolution sharpening transformation from diffusion ODF (dODF) to fiber ODF (fODF) . We show that this sharpening transformation improves angular resolution and fiber detec tion of QBI and thus greatly improves tractography results. The angular resolution of QBI is in fa ct improved by approximately 20 ◦ and the fODF is shown to behave very similarly of the fiber orienta tion density (FOD) estimated from the spherical deconvolution method of Tournier et al. Anoth er major contribution of the paper is the extensive comparison study on human brain datasets of ou r new deterministic and probabilistic tracking algorithms. As an application, we show how the r econstruction of transcallosal fiber connections intersecting with the corona radiata and the su p rior longitudinal fasciculus can be improved with the fODF in a group of 8 subjects. Current DTI base d methods neglect these fibers, which might lead to wrong interpretations of the brain funct ions. Key-words: fiber tractography, diffusion tensor imaging (DTI), high an gular resolution diffusion imaging (HARDI), q-ball imaging (QBI), spherical deco nv lution (SD), orientation distribution function (ODF) ∗ Maxime.Descoteaux@sophia.inria.fr † Rachid.Deriche@sophia.inria.fr ‡ anwander@cbs.mpg.de. Max Planck Institute for Human Cogni tive and Brain Science, Leipzig, Germany Déconvolution Sphérique de l’ODF et Tractographie Déterministe et Probabiliste en Imagerie par Q-Ball Résumé : Nous proposons d’étendre les algorithmes de tractographie classiques développés sur les images de tenseur de diffusion (DTI) pour les appliquer à l’imagerie par Q-Ball (QBI). Une contribution importante de ce rapport est l’intégration de l’état de l’art des méthodes de traitement d’images de diffusion à haute résolution angulaire (HARDI) pour obtenir des réseaux complexes de l’architecture neuronale de la matière blanche comporta nt des croisements, des embranchements et des configurations en éventail. D’abord, nous développon s une nouvelle méthode de déconvolution sphérique pour transformer la fonction de distributio n de diffusion des orientations (dODF) en une fonction de distribution d’orientations des fibres (fOD F). Cette transformation de sharpening augmente la résolution angulaire d’environ 20 ◦ et facilite l’extraction des maxima de l’ODF. Par conséquent les résultats de tractographie sur les fODFs son t plus complets et de meilleure qualité. Ensuite, nous démontrons que la fODF et la distribution obte nue par déconvolution sphérique classique de Tournier et al se comportent de la même manière sur de simulations de données HARDI. Enfin, une autre contribution importante du rapport est l’ét ude poussée et la comparaison des algorithmes de tractographie déterministes et probabilistes s ur des données HARDI réelles à partir du DTI, de la dODF et de la fODF. Nous montrons une application in téressante sur le corps calleux et la reconstruction des fibres transcallosales. Ces fibres son t normalement complétement ignorées par les techniques de tractographie en DTI car elles croisent le faisceau supérieur longitudinal ainsi que la couronne rayonnante. Notre tractographie en QBI basée su r la fODF nous permet de retrouver ces fibres transcallosales sur une base de données de 8 sujets , ce qui nous permet une connaissance anatomique plus fine de ces parties du cerveau. Mots-clés : Tractographie, imagerie du tenseur de diffusion (DTI), ima gerie de diffusion à haute résolution angulaire (HARDI), imagerie par Q-ball (QBI), f unction de distribution des orientations (ODF), déconvolution sphérique Q-Ball Imaging Tractography 3

[1]  Alan Connelly,et al.  Diffusion-weighted magnetic resonance imaging fibre tracking using a front evolution algorithm , 2003, NeuroImage.

[2]  Mariano Rivera,et al.  Basis Tensor Decomposition for Restoring Intra-Voxel Structure and Stochastic Walks for Inferring Brain Connectivity in DT-MRI , 2006, International Journal of Computer Vision.

[3]  Derek K Jones,et al.  Applications of diffusion‐weighted and diffusion tensor MRI to white matter diseases – a review , 2002, NMR in biomedicine.

[4]  Peter Savadjiev,et al.  3D curve inference for diffusion MRI regularization and fibre tractography , 2006, Medical Image Anal..

[5]  Rachid Deriche,et al.  Statistics on the Manifold of Multivariate Normal Distributions: Theory and Application to Diffusion Tensor MRI Processing , 2006, Journal of Mathematical Imaging and Vision.

[6]  Yaniv Assaf,et al.  Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain , 2005, NeuroImage.

[7]  Abbas F. Sadikot,et al.  Flow-based fiber tracking with diffusion tensor and q-ball data: Validation and comparison to principal diffusion direction techniques , 2005, NeuroImage.

[8]  Daniel C Alexander,et al.  Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[9]  R. Deriche,et al.  Apparent diffusion coefficients from high angular resolution diffusion imaging: Estimation and applications , 2006, Magnetic resonance in medicine.

[10]  Gerik Scheuermann,et al.  HOT-lines: tracking lines in higher order tensor fields , 2005, VIS 05. IEEE Visualization, 2005..

[11]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[12]  Carl-Fredrik Westin,et al.  A Bayesian approach for stochastic white matter tractography , 2006, IEEE Transactions on Medical Imaging.

[13]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[14]  Rachid Deriche,et al.  Diffusion tensor sharpening improves white matter tractography , 2007, SPIE Medical Imaging.

[15]  Susumu Mori,et al.  Fiber tracking: principles and strategies – a technical review , 2002, NMR in biomedicine.

[16]  M. Moseley,et al.  Magnetic Resonance in Medicine 51:924–937 (2004) Characterizing Non-Gaussian Diffusion by Using Generalized Diffusion Tensors , 2022 .

[17]  Mark J. Lowe,et al.  An objective method for regularization of fiber orientation distributions derived from diffusion-weighted MRI , 2007, NeuroImage.

[18]  Daniel C Alexander,et al.  Multiple‐Fiber Reconstruction Algorithms for Diffusion MRI , 2005, Annals of the New York Academy of Sciences.

[19]  A. Alexander,et al.  White matter tractography using diffusion tensor deflection , 2003, Human brain mapping.

[20]  Rachid Deriche,et al.  A linear and regularized ODF estimation algorithm to recover multiple fibers in Q-Ball imaging , 2004 .

[21]  David G. Norris,et al.  An Investigation of Functional and Anatomical Connectivity Using Magnetic Resonance Imaging , 2002, NeuroImage.

[22]  Carl-Fredrik Westin,et al.  Processing and visualization for diffusion tensor MRI , 2002, Medical Image Anal..

[23]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[24]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[25]  B W Kreher,et al.  Multitensor approach for analysis and tracking of complex fiber configurations , 2005, Magnetic resonance in medicine.

[26]  Andrew L. Alexander,et al.  Bootstrap white matter tractography (BOOT-TRAC) , 2005, NeuroImage.

[27]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[28]  Daniel C. Alexander,et al.  Probabilistic Monte Carlo Based Mapping of Cerebral Connections Utilising Whole-Brain Crossing Fibre Information , 2003, IPMI.

[29]  Yijun Liu,et al.  Using multiple tensor deflection to reconstruct white matter fiber traces with branching , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[30]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[31]  Kalvis M. Jansons,et al.  Persistent angular structure: new insights from diffusion magnetic resonance imaging data , 2003 .

[32]  Thomas R. Knösche,et al.  Parametric spherical deconvolution: Inferring multiple fiber bundles using diffusion MR imaging , 2007 .

[33]  Jean-Francois Mangin,et al.  Fiber Tracking in q-Ball Fields Using Regularized Particle Trajectories , 2005, IPMI.

[34]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[35]  Gareth J. Barker,et al.  Abnormal brain connectivity in first-episode psychosis: A diffusion MRI tractography study of the corpus callosum , 2007, NeuroImage.

[36]  Daniel C. Alexander,et al.  Maximum Entropy Spherical Deconvolution for Diffusion MRI , 2005, IPMI.

[37]  D. Tuch Diffusion MRI of complex tissue structure , 2002 .

[38]  A. Anderson Measurement of fiber orientation distributions using high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[39]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[40]  J. Thiran,et al.  Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. , 2006, Radiographics : a review publication of the Radiological Society of North America, Inc.

[41]  Baba C. Vemuri,et al.  Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT) , 2006, NeuroImage.

[42]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[43]  Derek K. Jones,et al.  Virtual in Vivo Interactive Dissection of White Matter Fasciculi in the Human Brain , 2002, NeuroImage.

[44]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Jens Frahm,et al.  Topography of the human corpus callosum revisited—Comprehensive fiber tractography using diffusion tensor magnetic resonance imaging , 2006, NeuroImage.

[46]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[47]  Derek K. Jones,et al.  Isotropic resolution diffusion tensor imaging with whole brain acquisition in a clinically acceptable time , 2002, Human brain mapping.

[48]  Peter Savadjiev,et al.  Validation and regularization in diffusion MRI tractography , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[49]  M. Horsfield,et al.  Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[50]  Giuseppe Scotti,et al.  A Model-Based Deconvolution Approach to Solve Fiber Crossing in Diffusion-Weighted MR Imaging , 2007, IEEE Transactions on Biomedical Engineering.

[51]  R. Deriche,et al.  Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.

[52]  Duan Xu,et al.  Q‐ball reconstruction of multimodal fiber orientations using the spherical harmonic basis , 2006, Magnetic resonance in medicine.

[53]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[54]  A. Anwander,et al.  Connectivity-Based Parcellation of Broca's Area. , 2006, Cerebral cortex.

[55]  J. Thiran,et al.  Diffusion Spectrum Imaging tractography in complex cerebral white matter: an investigation of the centrum semiovale , 2004 .