Graph-like spaces: An introduction

Thomassen and Vella (Graph-like continua, augmenting arcs, and Menger's Theorem, Combinatorica, doi:10.1007/s00493-008-2342-9) have recently introduced the notion of a graph-like space, simultaneously generalizing infinite graphs and many of the compact spaces recently used by Diestel or Richter (and their coauthors) to study cycle spaces and related problems in infinite graphs. This work is a survey to introduce graph-like spaces and shows how many of these works on compact spaces can be generalized to compact graph-like spaces.

[1]  R. Bruce Richter,et al.  The Planarity Theorems of MacLane and Whitney for Graph-like Continua , 2010, Electron. J. Comb..

[2]  D. Higgs,et al.  Matroids and duality , 1969 .

[3]  James Oxley Matroid Applications: Infinite Matroids , 1992 .

[4]  R. Bruce Richter,et al.  Circular chromatic index of type 1 Blanuša snarks , 2008 .

[5]  Saunders Mac Lane,et al.  A combinatorial condition for planar graphs , 1937 .

[6]  Carsten Thomassen Classification Of Locally 2-Connected Compact Metric Spaces , 2004, Comb..

[7]  CARSTEN THOMASSEN,et al.  Graph-like continua, augmenting arcs, and Menger’s theorem , 2008, Comb..

[8]  B. Richter,et al.  The cycle space of an embedded graph , 1984, J. Graph Theory.

[9]  Henning Bruhn,et al.  The cycle space of a 3-connected locally finite graph is generated by its finite and infinite peripheral circuits , 2004, J. Comb. Theory, Ser. B.

[10]  Carsten Thomassen The Locally Connected Compact Metric Spaces Embeddable In The Plane , 2004, Comb..

[11]  Robin Thomas,et al.  Well-quasi-ordering infinite graphs with forbidden finite planar minor , 1989 .

[12]  Carsten Thomassen,et al.  3-connected planar spaces uniquely embed in the sphere , 2002 .

[13]  Maya Jakobine Stein,et al.  MacLane's planarity criterion for locally finite graphs , 2006, J. Comb. Theory, Ser. B.

[14]  Henning Bruhn,et al.  Duality in Infinite Graphs , 2006, Combinatorics, Probability and Computing.

[15]  Schiefelin Claytor,et al.  Topological Immersion of Peanian Continua in a Spherical Surface , 1934 .

[16]  Carsten Thomassen,et al.  Planarity and duality of finite and infinite graphs , 1980, J. Comb. Theory B.

[17]  Reinhard Diestel,et al.  Topological paths, cycles and spanning trees in infinite graphs , 2004, Eur. J. Comb..

[18]  H. Whitney Non-Separable and Planar Graphs. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Bruce Richter,et al.  The bond and cycle spaces of an infinite graph , 2008, J. Graph Theory.

[20]  C. Paul Bonnington,et al.  Graphs embedded in the plane with a bounded number of accumulation points , 2003 .