Electrochemical properties and evolution of the phase transformation behavior in the NASICON-type Na3+xMnxV2-x(PO4)3 (0≤x≤1) cathodes for Na-ion batteries

[1]  G. Ceder,et al.  A High‐Energy NASICON‐Type Cathode Material for Na‐Ion Batteries , 2020, Advanced Energy Materials.

[2]  S. Pati,et al.  High Capacity and High‐Rate NASICON‐Na3.75V1.25Mn0.75(PO4)3 Cathode for Na‐Ion Batteries via Modulating Electronic and Crystal Structures , 2019, Advanced Energy Materials.

[3]  X. Xing,et al.  Understanding the superior sodium-ion storage in a novel Na3.5Mn0.5V1.5(PO4)3 cathode , 2019 .

[4]  Zhian Zhang,et al.  Engineering 3D Well-Interconnected Na4MnV(PO4)3 Facilitates Ultrafast and Ultrastable Sodium Storage. , 2019, ACS applied materials & interfaces.

[5]  Graeme Henkelman,et al.  Na3MnZr(PO4)3: A High-Voltage Cathode for Sodium Batteries. , 2018, Journal of the American Chemical Society.

[6]  K. Stevenson,et al.  Enhancing Na+ Extraction Limit through High Voltage Activation of the NASICON-Type Na4MnV(PO4)3 Cathode , 2018, ACS Applied Energy Materials.

[7]  Yunhui Huang,et al.  Superior Na-ion storage achieved by Ti substitution in Na3V2(PO4)3 , 2018, Energy Storage Materials.

[8]  Vadim M. Kovrugin,et al.  A NASICON‐Type Positive Electrode for Na Batteries with High Energy Density: Na 4 MnV(PO 4 ) 3 , 2018, Small Methods.

[9]  Zhian Zhang,et al.  Rational Architecture Design Enables Superior Na Storage in Greener NASICON‐Na4MnV(PO4)3 Cathode , 2018, Advanced Energy Materials.

[10]  R. Hagiwara,et al.  Na3V2(PO4)3/C Positive Electrodes with High Energy and Power Densities for Sodium Secondary Batteries with Ionic Liquid Electrolytes That Operate across Wide Temperature Ranges , 2018 .

[11]  Hanmei Tang,et al.  Understanding the Electrochemical Mechanisms Induced by Gradient Mg2+ Distribution of Na-Rich Na3+xV2–xMgx(PO4)3/C for Sodium Ion Batteries , 2018 .

[12]  S. Passerini,et al.  A cost and resource analysis of sodium-ion batteries , 2018 .

[13]  A. Abakumov,et al.  An electrochemical cell with sapphire windows for operando synchrotron X-ray powder diffraction and spectroscopy studies of high-power and high-voltage electrodes for metal-ion batteries. , 2018, Journal of synchrotron radiation.

[14]  Zhen Zhou,et al.  Micro/Nanostructured Materials for Sodium Ion Batteries and Capacitors. , 2018, Small.

[15]  Zhen Zhou,et al.  GO-induced preparation of flake-shaped Na3V2(PO4)3@rGO as high-rate and long-life cathodes for sodium-ion batteries , 2017 .

[16]  Zonghai Chen,et al.  Exploring Highly Reversible 1.5-Electron Reactions (V3+/V4+/V5+) in Na3VCr(PO4)3 Cathode for Sodium-Ion Batteries. , 2017, ACS applied materials & interfaces.

[17]  S. Okada,et al.  Improvement in the Energy Density of Na3V2(PO4)3 by Mg Substitution , 2017 .

[18]  L. Mai,et al.  In Operando Probing of Sodium-Incorporation in NASICON Nanomaterial: Asymmetric Reaction and Electrochemical Phase Diagram , 2017 .

[19]  G. F. Ortiz,et al.  Insight into the Electrochemical Sodium Insertion of Vanadium Superstoichiometric NASICON Phosphate. , 2017, Inorganic chemistry.

[20]  John B Goodenough,et al.  NaxMV(PO4)3 (M = Mn, Fe, Ni) Structure and Properties for Sodium Extraction. , 2016, Nano letters.

[21]  J. Lee,et al.  Extending the cycle life of Na3V2(PO4)3 cathodes in sodium-ion batteries through interdigitated carbon scaffolding , 2016 .

[22]  John B. Goodenough,et al.  Sodium Extraction from NASICON-Structured Na3MnTi(PO4)3 through Mn(III)/Mn(II) and Mn(IV)/Mn(III) Redox Couples , 2016 .

[23]  J. Tirado,et al.  Enhanced high-rate performance of manganese substituted Na 3 V 2 (PO 4 ) 3 /C as cathode for sodium-ion batteries , 2016 .

[24]  Y. Chiang,et al.  Engineering the Transformation Strain in LiMnyFe1-yPO4 Olivines for Ultrahigh Rate Battery Cathodes. , 2016, Nano letters.

[25]  J. Tirado,et al.  Effect of aluminum doping on carbon loaded Na3V2(PO4)3 as cathode material for sodium-ion batteries , 2015 .

[26]  C. Masquelier,et al.  Improving the energy density of Na3V2(PO4)3-based positive electrodes through V/Al substitution , 2015 .

[27]  G. F. Ortiz,et al.  Benefits of Chromium Substitution in Na3V2(PO4)3 as a Potential Candidate for Sodium‐Ion Batteries , 2015 .

[28]  D. Aurbach,et al.  A new phenomenon in sodium batteries: Voltage step due to solvent interaction , 2014 .

[29]  L. Croguennec,et al.  Multiple phases in the ε-VPO4O–LiVPO4O–Li2VPO4O system: a combined solid state electrochemistry and diffraction structural study , 2014 .

[30]  V. Petříček,et al.  Crystallographic Computing System JANA2006: General features , 2014 .

[31]  V. Roddatis,et al.  The mechanism of NaFePO₄ (de)sodiation determined by in situ X-ray diffraction. , 2014, Physical chemistry chemical physics : PCCP.

[32]  Jing Zhou,et al.  Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[33]  C. Ionica-Bousquet,et al.  Operando 57Fe Mössbauer and XRD investigation of LixMnyFe1-yPO4/C composites (y = 0.50; 0.75) , 2012 .

[34]  Stéphanie Belin,et al.  An Electrochemical Cell for Operando Study of Lithium Batteries Using Synchrotron Radiation , 2010 .

[35]  Igor V. Zatovsky,et al.  NASICON-type Na3V2(PO4)3 , 2010, Acta crystallographica. Section E, Structure reports online.

[36]  Rahul Malik,et al.  Phase diagram and electrochemical properties of mixed olivines from first-principles calculations , 2009 .

[37]  G. Prasad,et al.  Powder X-ray diffraction, infrared and conductivity studies of AgSbMP3O12 (M = Al, Ga, Fe and Cr) , 2008 .

[38]  G. Prasad,et al.  Preparation, characterization, and impedance studies of LiSbM(PO4)3 (M=Al, Fe, and Cr) , 2006 .

[39]  L. Nazar,et al.  Electrochemical property: Structure relationships in monoclinic Li(3-y)V2(PO4)3. , 2003, Journal of the American Chemical Society.

[40]  A. Yamada,et al.  Phase Diagram of Li x ( Mn y Fe1 − y ) PO 4 ( 0 ⩽ x , y ⩽ 1 ) , 2001 .

[41]  J. Gopalakrishnan,et al.  AMVMIII(PO4)3: New Mixed-Metal Phosphates Having NASICON and Related Structures , 1995 .

[42]  C. Delmas,et al.  Raman and infrared spectra of some chromium Nasicon-type materials: Short-range disorder characterization , 1992 .

[43]  D. Fu,et al.  Redetermination of the crystal structure of Na3Sc2(PO4)3 , 1988 .

[44]  P. Courtine,et al.  Preparation and structural properties of the solid state ionic conductor CuTi2 (PO4)3 , 1985 .

[45]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[46]  J. Tarascon,et al.  Na Reactivity toward Carbonate-Based Electrolytes: The Effect of FEC as Additive , 2016 .

[47]  A. Yamada,et al.  Alkaline Excess Strategy to NASICON-Type Compounds towards Higher-Capacity Battery Electrodes , 2016 .

[48]  G. F. Ortiz,et al.  Effect of Iron Substitution in the Electrochemical Performance of Na3V2(PO4)3 as Cathode for Na-Ion Batteries , 2015 .

[49]  Avicenne Energy,et al.  The Rechargeable Battery Market And Main Trends 2011 2020 , 2015 .

[50]  P. Moreau,et al.  Abnormal operando structural behavior of sodium battery material: Influence of dynamic on phase diagram of NaxFePO4 , 2014 .