The isospin-3 three-particle K-matrix at NLO in ChPT

[1]  S. Sharpe,et al.  Three relativistic neutrons in a finite volume , 2023, Journal of High Energy Physics.

[2]  R. Briceño,et al.  Analytic continuation of the relativistic three-particle scattering amplitudes , 2023, Physical Review D.

[3]  C. Morningstar,et al.  Interactions of πK, ππK and KKπ systems at maximal isospin from lattice QCD , 2023, Journal of High Energy Physics.

[4]  F. Romero-L'opez,et al.  Multi-hadron interactions from lattice QCD , 2022, Proceedings of The 39th International Symposium on Lattice Field Theory — PoS(LATTICE2022).

[5]  Jia-Jun Wu,et al.  Three-particle Lellouch-Lüscher formalism in moving frames , 2022, Journal of High Energy Physics.

[6]  A. Jackura Three-body scattering and quantization conditions from S -matrix unitarity , 2022, Physical Review D.

[7]  T. Husek,et al.  Six-meson amplitude in QCD-like theories , 2022, Physical Review D.

[8]  C. Urbach,et al.  Towards a theory of hadron resonances , 2022, Physics Reports.

[9]  B. Horz Spectroscopy and Hadron Interactions , 2022, Proceedings of The 38th International Symposium on Lattice Field Theory — PoS(LATTICE2021).

[10]  F. Romero-L'opez Three-particle scattering amplitudes from lattice QCD , 2021, Suplemento de la Revista Mexicana de Física.

[11]  S. Sharpe,et al.  Implementing the three-particle quantization condition for π+π+K+ and related systems , 2021, Journal of High Energy Physics.

[12]  S. Gottlieb,et al.  FLAG Review 2021 , 2021, The European Physical Journal C.

[13]  J. Hernández-Cordero,et al.  Scattering , 2021, Field Guide to Optoelectronics and Photonics.

[14]  Jia-Jun Wu,et al.  Relativistic-invariant formulation of the NREFT three-particle quantization condition , 2021, Journal of High Energy Physics.

[15]  J. Bijnens,et al.  Six-pion amplitude , 2021, Physical Review D.

[16]  A. Alexandru,et al.  Three-Body Dynamics of the a_{1}(1260) Resonance from Lattice QCD. , 2021, Physical review letters.

[17]  C. Morningstar,et al.  Interactions of two and three mesons including higher partial waves from lattice QCD , 2021, Journal of High Energy Physics.

[18]  S. Sharpe,et al.  Three-particle finite-volume formalism for π+π+K+ and related systems , 2021, Physical Review D.

[19]  M. Döring,et al.  Multi-particle systems on the lattice and chiral extrapolations: a brief review , 2021, The European Physical Journal Special Topics.

[20]  A. Alexandru,et al.  Three-body interactions from the finite-volume QCD spectrum , 2021, Physical Review D.

[21]  Tian-Yi Yu,et al.  Finite-volume energy shift of the three-pion ground state , 2020, Physical Review D.

[22]  S. Sharpe,et al.  Relativistic three-particle quantization condition for nondegenerate scalars , 2020, 2011.05520.

[23]  C. Urbach,et al.  Relativistic N-particle energy shift in finite volume , 2020, Journal of High Energy Physics.

[24]  A. Jackura,et al.  Solving relativistic three-body integral equations in the presence of bound states , 2020, Physical Review D.

[25]  A. Alexandru,et al.  Finite-volume energy spectrum of the K−K−K− system , 2020, Physical Review D.

[26]  David J. Wilson,et al.  Energy-Dependent π^{+}π^{+}π^{+} Scattering Amplitude from QCD. , 2020, Physical review letters.

[27]  L. Geng,et al.  DDK system in finite volume , 2020, Physical Review D.

[28]  C. Urbach,et al.  Scattering of two and three physical pions at maximal isospin from lattice QCD , 2020, The European Physical Journal C.

[29]  S. Sharpe,et al.  Equivalence of relativistic three-particle quantization conditions , 2020, 2007.16190.

[30]  S. Sharpe,et al.  Alternative derivation of the relativistic three-particle quantization condition , 2020, 2007.16188.

[31]  A. Alexandru,et al.  Three pion spectrum in the I=3 channel from lattice QCD , 2020 .

[32]  S. Beane,et al.  Charged multihadron systems in lattice QCD+QED , 2020, Physical Review D.

[33]  S. Sharpe,et al.  Generalizing the relativistic quantization condition to include all three-pion isospin channels , 2020, Journal of High Energy Physics.

[34]  A. Rusetsky Three particles on the lattice , 2019, Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019).

[35]  A. Alexandru,et al.  Three-body unitarity versus finite-volume π+π+π+ spectrum from lattice QCD , 2019, Physical Review D.

[36]  S. Sharpe,et al.  I=3 Three-Pion Scattering Amplitude from Lattice QCD. , 2019, Physical review letters.

[37]  S. Sharpe,et al.  Numerical exploration of three relativistic particles in a finite volume including two-particle resonances and bound states , 2019, Journal of High Energy Physics.

[38]  A. Alexandru,et al.  Cross-channel study of pion scattering from lattice QCD , 2019, Physical Review D.

[39]  S. Sharpe,et al.  Equivalence of three-particle scattering formalisms , 2019, Physical Review D.

[40]  S. Sharpe,et al.  Unitarity of the infinite-volume three-particle scattering amplitude arising from a finite-volume formalism , 2019, Physical Review D.

[41]  Andrew Hanlon,et al.  Two- and Three-Pion Finite-Volume Spectra at Maximal Isospin from Lattice QCD. , 2019, Physical review letters.

[42]  H. Hammer,et al.  Energy shift of the three-particle system in a finite volume , 2019, Physical Review D.

[43]  S. Sharpe,et al.  Implementing the three-particle quantization condition including higher partial waves , 2019, Journal of High Energy Physics.

[44]  S. Sharpe,et al.  Lattice QCD and Three-Particle Decays of Resonances , 2019, Annual Review of Nuclear and Particle Science.

[45]  S. Sharpe,et al.  Three-particle systems with resonant subprocesses in a finite volume , 2018, Physical Review D.

[46]  M. Doring,et al.  Finite-Volume Spectrum of π^{+}π^{+} and π^{+}π^{+}π^{+} Systems. , 2018, Physical review letters.

[47]  S. Sharpe,et al.  Numerical study of the relativistic three-body quantization condition in the isotropic approximation , 2018, Physical Review D.

[48]  Xinfa Chen,et al.  I=0 ππ s -wave scattering length from lattice QCD , 2017, Physical Review D.

[49]  H. Hammer,et al.  Three-particle quantization condition in a finite volume: 2. General formalism and the analysis of data , 2017, Journal of High Energy Physics.

[50]  M. Döring,et al.  Three-body unitarity in the finite volume , 2017, 1709.08222.

[51]  H. Hammer,et al.  Three-particle quantization condition in a finite volume: 1. The role of the three-particle force , 2017, Journal of High Energy Physics.

[52]  H. Hammer,et al.  Three-particle quantization condition in a finite volume: 2. General formalism and the analysis of data , 2017, 1707.02176.

[53]  H. Hammer,et al.  Three-particle quantization condition in a finite volume: 1. The role of the three-particle force , 2017, 1706.07700.

[54]  J. Dudek,et al.  Scattering processes and resonances from lattice QCD , 2017, 1706.06223.

[55]  S. Sharpe,et al.  Relating the finite-volume spectrum and the two-and-three-particle S matrix for relativistic systems of identical scalar particles , 2017, 1701.07465.

[56]  Dean Lee,et al.  Volume dependence of N-body bound states , 2017, 1701.00279.

[57]  P. Boyle,et al.  Low energy constants of SU(2) partially quenched chiral perturbation theory from Nf=2+1 domain wall QCD , 2015, 1511.01950.

[58]  J. Liu,et al.  Hadron-hadron interactions from Nf = 2 + 1 + 1 lattice QCD: isospin-2 ππ scattering length , 2015, Journal of High Energy Physics.

[59]  C. Urbach,et al.  Hadron-hadron interactions from Nf = 2 + 1 + 1 lattice QCD: isospin-2 ππ scattering length , 2015, 1506.00408.

[60]  S. Sharpe,et al.  Expressing the three-particle finite-volume spectrum in terms of the three-to-three scattering amplitude , 2015, 1504.04248.

[61]  J. Bijnens CHIRON: a package for ChPT numerical results at two loops , 2014, 1412.0887.

[62]  H. Friedman,et al.  Foundational aspects of singular integrals , 2014, 1401.7045.

[63]  S. Sharpe,et al.  Relativistic, model-independent, three-particle quantization condition , 2013, 1408.5933.

[64]  T. Lippert,et al.  Lattice QCD at the physical point meets SU (2) chiral perturbation theory , 2013, 1310.3626.

[65]  R. Briceño,et al.  Three-particle scattering amplitudes from a finite volume formalism , 2012, 1212.3398.

[66]  Z. Fodor,et al.  SU(2) chiral perturbation theory low-energy constants from 2+1 flavor staggered lattice simulations , 2012, 1205.0788.

[67]  A. Rusetsky,et al.  Three particles in a finite volume , 2012, 1203.1241.

[68]  S. Scherer,et al.  A Primer for Chiral Perturbation Theory , 2011 .

[69]  S. Beane,et al.  SU(2) Low-Energy Constants from Mixed-Action Lattice QCD , 2011, 1108.1380.

[70]  W. Detmold,et al.  Lattice QCD study of mixed systems of pions and kaons , 2011, 1103.4362.

[71]  J. Bijnens,et al.  Meson-meson scattering in QCD-like theories , 2011, 1102.0172.

[72]  C. DeTar,et al.  Results for light pseudoscalar mesons , 2010, 1012.0868.

[73]  William Detmold,et al.  Multipion systems in lattice QCD and the three-pion interaction. , 2007, Physical review letters.

[74]  S. Beane,et al.  n-Boson Energies at Finite Volume and Three-Boson Interactions , 2007, 0707.1670.

[75]  M. L. Glasser,et al.  THE MATHEMATICS OF PRINCIPAL VALUE INTEGRALS AND APPLICATIONS TO NUCLEAR PHYSICS, TRANSPORT THEORY, AND CONDENSED MATTER PHYSICS , 1996 .

[76]  Heinrich Leutwyler,et al.  Chiral perturbation theory to one loop , 1984 .

[77]  Jia-Jun Wu,et al.  Relativistic-invariant formulation of the three-particle quantization condition , 2021 .