Entanglement under equilibrium establishing in spin systems subjected to radiofrequency field

We study the entanglement evolution in a dipolar-coupled spin system irradiated by a radiofrequency (RF) field in quasi-equilibrium state characterized by a two-temperature density matrix. Process of the establishment of equilibrium is in the equalization of these temperatures. The method of the nonequilibrium statistical operator in a rotating frame is used to describe the evolution of the spin system. It is shown that the equilibrium establishment has nonexponential character, and the time needed for this establishment depends strongly on the RF field strength. Particularly, the weak RF irradiation increases the lifetime of entanglement. Temporal and temperature dependencies of the concurrence of spin pairs are obtained and discussed. It is shown that application of RF field increases the time of the equilibrium establishment (up to order of 1,000 times) and lifetime of the existence of entangled states (up to order of 1,000 times). Thus, with the help of RF irradiation, we can govern the relaxation process and control entanglement in the system. The obtained results can be used for analysis of more complex spin systems because dipole–dipole interaction decreases proportionally to inverse third power of the distance between the spins, and influence of far way spins can be negligible.

[1]  M. Rodak,et al.  TEMPERATURE OF SPIN-SPIN INTERACTIONS IN ELECTRON SPIN RESONANCE , 1972 .

[2]  E. R. Andrew Spin Temperature and Nuclear Magnetic Resonance in Solids , 1971 .

[3]  Out of equilibrium correlation functions of quantum anisotropic XY models: one-particle excitations , 2003, cond-mat/0306285.

[4]  Giuliano Benenti,et al.  Principles of Quantum Computation and Information:Volume II: Basic Tools and Special Topics , 2007 .

[5]  J. Yesinowski,et al.  1H and 19F Multiple-Quantum NMR Dynamics in Quasi-One-Dimensional Spin Clusters in Apatites , 1996 .

[6]  A. Redfield,et al.  Nuclear Magnetism: Order and Disorder , 1982 .

[7]  A. Osterloh,et al.  Dynamics of entanglement in one-dimensional spin systems (24 pages) , 2003, quant-ph/0307048.

[8]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[9]  A. Redfield,et al.  Nuclear Magnetic Resonance Saturation and Rotary Saturation in Solids , 1955 .

[10]  A. G. Anderson,et al.  Nuclear Magnetic Resonance in the Demagnetized State , 1962 .

[11]  E. B. Fel'dman,et al.  Evolution of spin entanglement and an entanglement witness in multiple-quantum NMR experiments , 2008, 0804.4406.

[12]  V. Vedral Quantum physics: Hot entanglement , 2010, Nature.

[13]  A. Osterloh,et al.  Bethe Ansatz approach to the pairing fluctuations in the mesoscopic regime , 2012, 1201.5851.

[14]  T. Hashi,et al.  Adiabatic demagnetization in the doubly rotating frame , 1971 .

[15]  V. Subrahmanyam Entanglement dynamics and quantum-state transport in spin chains (4 pages) , 2003, quant-ph/0307135.

[16]  V. Vedral,et al.  Entanglement in Many-Body Systems , 2007, quant-ph/0703044.

[17]  P. Callaghan,et al.  A pulsed field gradient system for a fourier transform spectrometer , 1980 .

[18]  V. Meerovich,et al.  Adiabatic demagnetization and generation of entanglement in spin systems , 2012, 1201.3902.

[19]  G. B. Furman,et al.  Dynamics of entanglement in a one-dimensional Ising chain , 2008 .

[20]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[21]  Gregory B. Furman,et al.  Entanglement in dipolar coupling spin system in equilibrium state , 2011, Quantum Information Processing.

[22]  E. B. Fel'dman,et al.  Entanglement of systems of dipolar coupled nuclear spins at the adiabatic demagnetization , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  V. Meerovich,et al.  Fading entanglement near an equilibrium state , 2012, 1302.5231.

[24]  J. Jeener,et al.  "Zeeman" and "Dipolar" Spin Temperatures during a Strong rf Irradiation , 1965 .

[25]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[26]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[27]  N. Buric Influence of the thermal environment on entanglement dynamics in small rings of qubits , 2008 .

[28]  C. Slichter,et al.  Studies of Perturbation Theory and Spin Temperature by Rotary Saturation of Spins , 1966 .

[29]  J. Jeener,et al.  Thermodynamics of spin systems in solids , 1964 .

[30]  Karolin Papst Principles Of Quantum Computation And Information , 2016 .

[31]  Gregory B. Furman,et al.  Entanglement of dipolar coupling spins , 2010, Quantum Inf. Process..

[32]  Vlatko Vedral,et al.  Quantum discord and other measures of quantum correlation , 2011 .

[33]  David Zueco,et al.  Bringing entanglement to the high temperature limit. , 2010, Physical review letters.

[34]  A. L. Kuzemsky,et al.  Nonequilibrium Statistical Thermodynamics , 2017 .

[35]  Gregory B. Furman,et al.  Nuclear polarization and entanglement in spin systems , 2009, Quantum Inf. Process..