Performance of thin hydrogenated amorphous silicon thin‐film transistors

In this paper we have analyzed the influence of the mask channel length (LM) on the performance of the 55‐nm‐hydrogenated amorphous silicon (a‐Si:H) thin‐film transistors (TFTs), incorporating nitrogen‐rich hydrogenated amorphous silicon nitride gate dielectric and phosphorus‐doped microcrystalline silicon (n+μc‐Si:H) source/drain (S/D) contacts. In our TFTs the n+μc‐Si:H S/D contacts have a specific contact resistance around or below 0.5 Ω cm2. We have shown that in our TFTs a field‐effect mobility and threshold voltage are dependent on LM, and this dependence is most likely due to the influence of the S/D contact series resistance on TFTs characteristics. Finally, we have demonstrated that if the mask channel length is extended by a ΔL (which is a distance from the S/D via edge at which the electron injection/collection is taking place) the field‐effect mobility and threshold voltage are independent of the channel length. In such a case μFE, VT, and ON/OFF current ratio around 0.76 cm2/V s, 2.5 V, and 1...

[1]  M. Thompson,et al.  Thin-film transistors on a-Si:H , 1982, IEEE Transactions on Electron Devices.

[2]  N. Lustig,et al.  Gate dielectric and contact effects in hydrogenated amorphous silicon‐silicon nitride thin‐film transistors , 1989 .

[3]  K. Terada,et al.  A New Method to Determine Effective MOSFET Channel Length , 1979 .

[4]  H.I. Hanafi,et al.  An accurate and simple MOSFET model for computer-aided design , 1982, IEEE Journal of Solid-State Circuits.

[5]  M. J. Powell The physics of amorphous-silicon thin-film transistors , 1989 .

[6]  T. Tsukada,et al.  Analysis and design of a-Si TFT/LCD panels with a pixel model , 1989 .

[7]  Albert Rose,et al.  Space-Charge-Limited Currents in Solids , 1955 .

[8]  J. Kanicki,et al.  Investigation of the Silicon Nitride on Hydrogenated Amorphous Silicon Interface , 1989 .

[9]  M. Thompson The Materials Issues and Applications of Amorphous Silicon Thin Film Transistors , 1986 .

[10]  Malcolm J. Thompson,et al.  Thin film transistors for large area electronics , 1984 .

[11]  S. Griep Geometry Dependence of the Transport Parameters in Field Effect Transistors Made from Amorphous Silicon , 1989 .

[12]  S. Jeng,et al.  Correlations Between Optical, Electrical, and Structural Properties of In-Situ Phosphorus-Doped Hydrogenated Microcrystalline Silicon - Effects of Rapid Thermal Annealing on Material Properties , 1989 .

[13]  J. Kanicki,et al.  Spatial charge distribution in as-deposited and UV-illuminated gate-quality nitrogen-rich silicon nitride , 1989, IEEE Electron Device Letters.

[14]  M. Shur,et al.  Above threshold characteristics of amorphous silicon alloy thin‐film transistors , 1984 .

[15]  J. Kanicki,et al.  Direct observation of the silicon nitride on amorphous silicon interface states , 1990 .

[16]  Jerzy Kanicki,et al.  Stability of electrical properties of nitrogen-rich, silicon-rich, and stoichiometric silicon nitride films , 1989 .

[17]  Sadayoshi Hotta,et al.  The Characteristics of Amorphous Silicon TFT and its Application in Liquid Crystal Display , 1987 .

[18]  J. W. Orton,et al.  Characteristics of amorphous silicon staggered-electrode thin-film transistors , 1984 .

[19]  J. Kanicki,et al.  Properties of High Conductivity Phosphorous Doped Hydrogenated Microcrystalline Silicon and Application in Thin Film Transistor Technology , 1989 .

[20]  M. J. Powell Material Properties Controlling the Performance of Amorphous Silicon Thin Film Transistors , 1984 .

[21]  Jerzy Kanicki,et al.  Contact resistance to undoped and phosphorus-doped hydrogenated amorphous silicon films , 1988 .

[22]  J. Kanicki,et al.  Spatial charge distribution in the plasma‐enhanced chemical vapor deposited nitrogen‐rich silicon nitride , 1989 .

[23]  J. Kanicki,et al.  Investigation of the light-induced effects in nitrogen-rich silicon nitride films , 1989 .

[24]  D. Krick,et al.  Electron‐spin‐resonance study of defects in plasma‐enhanced chemical vapor deposited silicon nitride , 1988 .