Symbolic Bisimulation for Quantum Processes

With the previous notions of bisimulation presented in the literature, to check if two quantum processes are bisimilar, we have to instantiate their free quantum variables with arbitrary quantum states, and verify the bisimilarity of the resulting configurations. This makes checking bisimilarity infeasible from an algorithmic point of view, because quantum states constitute a continuum. In this article, we introduce a symbolic operational semantics for quantum processes directly at the quantum operation level, which allows us to describe the bisimulation between quantum processes without resorting to quantum states. We show that the symbolic bisimulation defined here is equivalent to the open bisimulation for quantum processes in previous work, when strong bisimulations are considered. An algorithm for checking symbolic ground bisimilarity is presented. We also give a modal characterisation for quantum bisimilarity based on an extension of Hennessy-Milner logic to quantum processes.

[1]  Timothy A. S. Davidson,et al.  Formal verification techniques using quantum process calculus , 2012 .

[2]  D. A. Edwards The mathematical foundations of quantum mechanics , 1979, Synthese.

[3]  Yuan Feng,et al.  Probabilistic bisimulations for quantum processes , 2007, Inf. Comput..

[4]  Nikolaos Papanikolaou,et al.  Model – Checking Quantum Protocols , 2006 .

[5]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[6]  Yuxin Deng,et al.  Logical, Metric, and Algorithmic Characterisations of Probabilistic Bisimulation , 2011, ArXiv.

[7]  Rajagopal Nagarajan,et al.  Communicating quantum processes , 2004, POPL '05.

[8]  Yuan Feng,et al.  Model checking quantum Markov chains , 2012, J. Comput. Syst. Sci..

[9]  Kurt Mehlhorn,et al.  Can A Maximum Flow be Computed on o(nm) Time? , 1990, ICALP.

[10]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[11]  Anna Ingólfsdóttir,et al.  A Theory of Communicating Processes with Value-Passing , 1990, ICALP.

[12]  Davide Sangiorgi,et al.  A theory of bisimulation for the π-calculus , 2009, Acta Informatica.

[13]  Philippe Jorrand,et al.  Toward a quantum process algebra , 2004, CF '04.

[14]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[15]  Anna Ingólfsdóttir,et al.  A Theory of Communicating Processes with Value Passing , 1993, Inf. Comput..

[16]  Rajagopal Nagarajan,et al.  QMC: A Model Checker for Quantum Systems , 2007, CAV.

[17]  Matthew Hennessy,et al.  Symbolic Bisimulations , 1995, Theor. Comput. Sci..

[18]  Edmund M. Clarke,et al.  Symbolic Model Checking: 10^20 States and Beyond , 1990, Inf. Comput..

[19]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[20]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[21]  Yuan Feng,et al.  Bisimulation for Quantum Processes , 2010, TOPL.

[22]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and EPR channels , 1993 .

[23]  Davide Sangiorgi,et al.  A Theory of Bisimulation for the pi-Calculus , 1993, CONCUR.

[24]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[25]  Yuan Feng,et al.  An algebra of quantum processes , 2007, TOCL.

[26]  Hideki Sakurada,et al.  Application of a Process Calculus to Security Proofs of Quantum Protocols , 2012 .

[27]  Rajagopal Nagarajan,et al.  Probabilistic Model-Checking of Quantum Protocols , 2005, ArXiv.

[28]  Marie Lalire,et al.  Relations among quantum processes: bisimilarity and congruence , 2006, Mathematical Structures in Computer Science.

[29]  Yuan Feng,et al.  Open Bisimulation for Quantum Processes , 2012, IFIP TCS.