Feature patterns in recognizing non-interacting and interacting primitive, circular and slanting features using a neural network

Many varied techniques have long been suggested for the recognition of features from solid modellers, and the systems which have incorporated these techniques have achieved a moderate success. However the problem of recognition of the wide variety of features, e.g. interacting and non-interacting primitive, circular and slanting features, that any real life component may have, requires complex systems which are inflexible and hence limited in their use. Here, we present a simple and flexible system in which the features are defined as patterns of edges and vertices to deal with all the above types of features. The system starts by searching a B-rep solid model, using a cross-sectional layer method, for volumes which can be considered to represent features. Once the volumes are detected, their edges and vertices are processed and arranged into feature patterns which are used as input for a neural network to recognize the features. Simple conventions used in this work enable the creation of feature patterns...