Tubular lysosome morphology and distribution within macrophages depend on the integrity of cytoplasmic microtubules.

Pinocytosis of the fluorescent dye lucifer yellow labels elongated, membrane-bound tubular organelles in several cell types, including cultured human monocytes, thioglycolate-elicited mouse peritoneal macrophages, and the macrophage-like cell line J774.2. These tubular structures can be identified as lysosomes by acid phosphatase histochemistry and immunofluorescence localization of cathepsin L. The abundance of tubular lysosomes is markedly increased by treatment with phorbol 12-myristate 13-acetate (10 ng/ml). When labeled by pinocytosis of microperoxidase and examined by electron microscopic histochemistry, the tubular lysosomes have an outside diameter of approximately 75 nm and a length of several micrometers; they radiate from the cell's centrosphere in alignment with cytoplasmic microtubules and intermediate filaments. Incubation of phorbol myristate acetate-treated macrophages at 4 degrees C or in medium containing 5 microM colchicine or nocodazole at 37 degrees C leads to disassembly of microtubules and fragmentation of the tubular lysosomes. Return of the cultures to 37 degrees C or removal of nocodazole from the medium leads to reassembly of microtubules and the reappearance of tubular lysosomes within 10-20 min. We conclude that microtubules are essential for the maintenance of tubular lysosome morphology and that, in macrophages, a significant proportion of the lysosomal compartment is contained within these tubular structures.