Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal.

A photonic crystal nanocavity with a Quality (Q) factor of 1.4 x 10(6), a mode volume of 0.78(lambda/n)(3), and an operating wavelength of 637 nm is designed in a silicon nitride (SiN(x)) ridge waveguide with refractive index of 2.0. The effect on the cavity Q factor and mode volume of single diamond nanocrystals of various sizes and locations embedded in the center and on top of the nanocavity is simulated, demonstrating that Q > 1 x 10(6) is achievable for realistic parameters. An analysis of the figures of merit for cavity quantum electrodynamics reveals that strong coupling between an embedded diamond nitrogen-vacancy center and the cavity mode is achievable for a range of cavity dimensions.

[1]  Mayer,et al.  Stable solid-state source of single photons , 2000, Physical review letters.

[2]  Ronald Hanson,et al.  Fabrication and Characterization of Two-Dimensional Photonic Crystal Microcavities in Nanocrystalline Diamond , 2007 .

[3]  Hideo Mabuchi,et al.  Integration of fiber-coupled high-Q SiNx microdisks with atom chips , 2006, quant-ph/0605234.

[4]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[5]  Christian Kurtsiefer,et al.  Stable Solid-State Source of Single Photons , 2000 .

[6]  B. Englert,et al.  Cavity quantum electrodynamics , 2006 .

[7]  Young-Shin Park,et al.  Cavity QED with diamond nanocrystals and silica microspheres. , 2006, Nano letters.

[8]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[9]  J. Meijer,et al.  Room-temperature coherent coupling of single spins in diamond , 2006, quant-ph/0605038.

[10]  Yumin Shen,et al.  Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals , 2008 .

[11]  J. Meijer,et al.  Generation of single color centers by focused nitrogen implantation , 2005 .

[12]  L. Childress,et al.  Supporting Online Material for , 2006 .

[13]  Oliver Benson,et al.  Emission properties of high-Q silicon nitride photonic crystal heterostructure cavities , 2008 .

[14]  C. Weisbuch,et al.  Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. , 1992, Physical review letters.

[15]  P. Barclay Fiber-coupled nanophotonic devices for nonlinear optics and cavity QED , 2007 .

[16]  M. Kafesaki,et al.  Spontaneous emission in the near field of two-dimensional photonic crystals. , 2005, Optics Letters.

[17]  Evelyn L. Hu,et al.  Positioning photonic crystal cavities to single InAs quantum dots , 2004 .

[18]  Joseph Salzman,et al.  Ultra high-Q photonic crystal nanocavity design: the effect of a low-epsilon slab material. , 2008, Optics express.

[19]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[20]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[21]  Oliver Benson,et al.  Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities. , 2007, Optics express.

[22]  Masaya Notomi,et al.  Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect , 2006 .

[23]  Masaya Notomi,et al.  Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity , 2007 .

[24]  S Mias,et al.  Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities. , 2004, Optics express.

[25]  Jeff F. Young,et al.  Emission spectrum of electromagnetic energy stored in a dynamically perturbed optical microcavity. , 2007, Optics express.

[26]  J. Vučković,et al.  Gallium phosphide photonic crystal nanocavities in the visible , 2008, LEOS 2008 - 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[27]  M. Notomi,et al.  Ultrahigh-Q nanocavity with 1D photonic gap. , 2008, Optics express.

[28]  Dirk Englund,et al.  Controlling Cavity Reflectivity with a Single Quantum Dot , 2007 .

[29]  C. Becher,et al.  Design of photonic crystal microcavities in diamond films for quantum information , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[30]  J. Cirac,et al.  IDEAL QUANTUM COMMUNICATION OVER NOISY CHANNELS : A QUANTUM OPTICAL IMPLEMENTATION , 1997, quant-ph/9702036.

[31]  S. Gulde,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2007, Nature.

[32]  M. Sorel,et al.  Tapered Photonic Crystal Microcavities Embedded in Photonic Wire Waveguides With Large Resonance Quality-Factor and High Transmission , 2008, IEEE Photonics Technology Letters.

[33]  P Hemmer,et al.  Stark shift control of single optical centers in diamond. , 2006, Physical Review Letters.

[34]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[35]  Pierre M. Petroff,et al.  Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes , 2005, Science.

[36]  Philippe Lalanne,et al.  Bloch-wave engineering for high-Q, small-V microcavities , 2003 .

[37]  Andrew D. Greentree,et al.  Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms , 2006 .

[38]  Marko Loncar,et al.  Ultra-high quality factor optical resonators based on semiconductor nanowires. , 2008, Optics express.

[39]  A. Pattantyus-Abraham,et al.  Efficient coupling of photonic crystal microcavity modes to a ridge waveguide , 2007 .

[40]  G. Sęk,et al.  Strong coupling in a single quantum dot semiconductor microcavity system , 2006, SPIE OPTO.

[41]  P Lalanne,et al.  Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities. , 2005, Optics express.

[42]  Philip Hemmer,et al.  Coherent population trapping of single spins in diamond under optical excitation. , 2006, Physical review letters.

[43]  R Hanson,et al.  Polarization and readout of coupled single spins in diamond. , 2006, Physical review letters.

[44]  Axel Scherer,et al.  Defect Modes of a Two-Dimensional Photonic Crystal in an Optically Thin Dielectric Slab , 1999 .

[45]  T. Gacoin,et al.  Room temperature stable single-photon source , 2002 .

[46]  M. Steel,et al.  Diamond based photonic crystal microcavities. , 2006, Optics express.

[47]  Jelena Vucković,et al.  Design of photonic crystal microcavities for cavity QED. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  O. Painter,et al.  Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment. , 2005, Optics express.

[49]  A. D. Boozer,et al.  Trapped atoms in cavity QED: coupling quantized light and matter , 2005 .

[50]  T. Asano,et al.  Ultra-high-Q photonic double-heterostructure nanocavity , 2005 .

[51]  Oskar Painter,et al.  Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces , 2007 .

[52]  Jean-Michel Gérard,et al.  Solid-State Cavity-Quantum Electrodynamics with Self-Assembled Quantum Dots , 2003 .

[53]  Oskar Painter,et al.  Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system , 2007, Nature.