Microstructure engineering of solid-state composite cathode via solvent-assisted processing

[1]  M. Ghidiu,et al.  Impact of Solvent Treatment of the Superionic Argyrodite Li 6 PS 5 Cl on Solid‐State Battery Performance , 2021 .

[2]  Yan Yao,et al.  High-Energy All-Solid-State Organic–Lithium Batteries Based on Ceramic Electrolytes , 2020, ACS Energy Letters.

[3]  Chunsheng Wang,et al.  Lithium/Sulfide All‐Solid‐State Batteries using Sulfide Electrolytes , 2020, Advanced materials.

[4]  Y. Jung,et al.  Digital Twin‐Driven All‐Solid‐State Battery: Unraveling the Physical and Electrochemical Behaviors , 2020, Advanced Energy Materials.

[5]  Felix H. Richter,et al.  Influence of Carbon Additives on the Decomposition Pathways in Cathodes of Lithium Thiophosphate-Based All-Solid-State Batteries , 2020 .

[6]  Xiaofei Yang,et al.  Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries , 2020 .

[7]  H. Gasteiger,et al.  Operando Identification of Liquid Intermediates in Lithium–Sulfur Batteries via Transmission UV–vis Spectroscopy , 2020, Journal of The Electrochemical Society.

[8]  Adelaide M. Nolan,et al.  Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries. , 2020, Chemical reviews.

[9]  Yan Yao,et al.  Opportunities and Challenges for Organic Electrodes in Electrochemical Energy Storage. , 2020, Chemical reviews.

[10]  I. Han,et al.  High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes , 2020 .

[11]  Ellen Ivers-Tiffée,et al.  Benchmarking the performance of all-solid-state lithium batteries , 2020 .

[12]  Y. Meng,et al.  Thin Solid Electrolyte Layers Enabled by Nanoscopic Polymer Binding , 2020, ACS Energy Letters.

[13]  Felix H. Richter,et al.  Analysis of Interfacial Effects in All-Solid-State Batteries with Thiophosphate Solid Electrolytes. , 2020, ACS applied materials & interfaces.

[14]  L. Archer,et al.  Designing solid-state electrolytes for safe, energy-dense batteries , 2020, Nature Reviews Materials.

[15]  G. Ceder,et al.  Understanding interface stability in solid-state batteries , 2019, Nature Reviews Materials.

[16]  G. Ceder,et al.  High Active Material Loading in All‐Solid‐State Battery Electrode via Particle Size Optimization , 2019, Advanced Energy Materials.

[17]  M. Wagemaker,et al.  Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes , 2019, Nature Materials.

[18]  Hongli Zhu,et al.  Sulfide‐Based Solid‐State Electrolytes: Synthesis, Stability, and Potential for All‐Solid‐State Batteries , 2019, Advanced materials.

[19]  Erik A. Wu,et al.  Elucidating Reversible Electrochemical Redox of Li6PS5Cl Solid Electrolyte , 2019, ACS Energy Letters.

[20]  Z. Wen,et al.  A high-energy quinone-based all-solid-state sodium metal battery , 2019, Nano Energy.

[21]  Yan Yao,et al.  Taming Active Material-Solid Electrolyte Interfaces with Organic Cathode for All-Solid-State Batteries , 2019, Joule.

[22]  J. Sann,et al.  Visualization of the Interfacial Decomposition of Composite Cathodes in Argyrodite-Based All-Solid-State Batteries Using Time-of-Flight Secondary-Ion Mass Spectrometry , 2019, Chemistry of Materials.

[23]  J. Janek,et al.  Experimental Assessment of the Practical Oxidative Stability of Lithium Thiophosphate Solid Electrolytes , 2019, Chemistry of Materials.

[24]  K. Tadanaga,et al.  Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery , 2019, Nature Reviews Chemistry.

[25]  S. Passerini,et al.  Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte , 2019, Energy Storage Materials.

[26]  Y. Chiang,et al.  Electrochemical Redox Behavior of Li Ion Conducting Sulfide Solid Electrolytes , 2019, Chemistry of Materials.

[27]  D. Weber,et al.  Microstructural Modeling of Composite Cathodes for All-Solid-State Batteries , 2018, The Journal of Physical Chemistry C.

[28]  Yang Zhao,et al.  Addressing Interfacial Issues in Liquid-Based and Solid-State Batteries by Atomic and Molecular Layer Deposition , 2018, Joule.

[29]  S. Indris,et al.  Inducing High Ionic Conductivity in the Lithium Superionic Argyrodites Li6+ xP1- xGe xS5I for All-Solid-State Batteries. , 2018, Journal of the American Chemical Society.

[30]  Chunsheng Wang,et al.  Architectural design and fabrication approaches for solid-state batteries , 2018, MRS Bulletin.

[31]  T. Mallouk,et al.  Salt-Based Organic-Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li10 GeP2 S12 Solid Electrolyte Interface. , 2018, Angewandte Chemie.

[32]  Yan Yao,et al.  Positioning Organic Electrode Materials in the Battery Landscape , 2018, Joule.

[33]  Y. Ha,et al.  LiI-Doped Sulfide Solid Electrolyte: Enabling a High-Capacity Slurry-Cast Electrode by Low-Temperature Post-Sintering for Practical All-Solid-State Lithium Batteries. , 2018, ACS applied materials & interfaces.

[34]  Xiao Ji,et al.  Solid-State Electrolyte Anchored with a Carboxylated Azo Compound for All-Solid-State Lithium Batteries. , 2018, Angewandte Chemie.

[35]  Li Lu,et al.  Review on solid electrolytes for all-solid-state lithium-ion batteries , 2018, Journal of Power Sources.

[36]  J. Janek,et al.  Impact of Cathode Material Particle Size on the Capacity of Bulk-Type All-Solid-State Batteries , 2018 .

[37]  Sehee Lee,et al.  Tailored Organic Electrode Material Compatible with Sulfide Electrolyte for Stable All-Solid-State Sodium Batteries. , 2018, Angewandte Chemie.

[38]  J. Sann,et al.  Redox-active cathode interphases in solid-state batteries , 2017 .

[39]  Jun-Y. Park,et al.  Performance improvement of all-solid-state Li-S batteries with optimizing morphology and structure of sulfur composite electrode , 2017 .

[40]  T. Leichtweiss,et al.  Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes , 2017 .

[41]  R. Dedryvère,et al.  Interface Stability of Argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in Bulk All-Solid-State Batteries , 2017 .

[42]  David P. Wilkinson,et al.  Recent advances in all-solid-state rechargeable lithium batteries , 2017 .

[43]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[44]  R. Dedryvère,et al.  Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: An XPS study , 2017 .

[45]  Xiulin Fan,et al.  High-Performance All-Solid-State Lithium-Sulfur Battery Enabled by a Mixed-Conductive Li2S Nanocomposite. , 2016, Nano letters.

[46]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[47]  K. Shakesheff,et al.  Thermoresponsive magnetic colloidal gels via surface-initiated polymerisation from functional microparticles. , 2016, Journal of materials chemistry. B.

[48]  K. Tadanaga,et al.  Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries , 2015 .

[49]  Yizhou Zhu,et al.  Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. , 2015, ACS applied materials & interfaces.

[50]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[51]  A. Hayashi,et al.  All-solid-state lithium secondary batteries using the 75Li2S·25P2S5 glass and the 70Li2S·30P2S5 glass—ceramic as solid electrolytes , 2013 .

[52]  Kunlun Hong,et al.  Anomalous high ionic conductivity of nanoporous β-Li3PS4. , 2013, Journal of the American Chemical Society.

[53]  T. Nokami,et al.  Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity. , 2012, Journal of the American Chemical Society.

[54]  J. Gal,et al.  Interaction of the cesium cation with mono-, di-, and tricarboxylic acids in the gas phase. A Cs+ affinity scale for cesium carboxylates ion pairs , 2009, Journal of the American Society for Mass Spectrometry.

[55]  J. Watts,et al.  ToF‐SIMS depth profiling of a complex polymeric coating employing a C60 sputter source , 2007 .

[56]  U. Troeltzsch,et al.  Characterizing aging effects of lithium ion batteries by impedance spectroscopy , 2006 .

[57]  M. Krishnamurthy,et al.  Fragmentation of cesium-carbon cluster anions CsC{sub n}{sup -} (n{<=}10) , 2003 .