Metabolic pathways of clostridia for producing butanol.

Worldwide demand for energy has been the impetus for research to produce alcohol biofuels from renewable resources. This review focuses on the biosynthesis of butanol, which is regarded to be superior to ethanol as a fuel. Although acetone/butanol fermentation is one of the oldest large-scale fermentation processes, butanol yield by anaerobic fermentation remains sub-optimal. Metabolic engineering provides a means for fermentation improvements. Consequently, a comprehensive assessment of the intermediary enzymes involved in butanol formation from carbohydrates by the saccharolytic bacterium, Clostridium acetobutylicum and other closely allied clostridia was performed to provide guidelines for potentially enhancing butanol productivity. The activity of the enzymes, their regulation and contribution to the metabolic pathways was reviewed. Published kinetic data for each important enzymatic reaction were assessed. For most enzymatic reactions, the systematic investigation of the kinetic data and the properties of the enzymes led to the development of rate equations that were able to describe activity as the function of the substrates, products, and allosteric effectors.

[1]  A. Sols,et al.  End-product inhibition of yeast phosphofructokinase by ATP. , 1963, Biochemical and biophysical research communications.

[2]  G. Bennett,et al.  Intracellular Concentrations of Coenzyme A and Its Derivatives from Clostridium acetobutylicum ATCC 824 and Their Roles in Enzyme Regulation , 1994, Applied and environmental microbiology.

[3]  J. Gapes,et al.  The economics of acetone-butanol fermentation: theoretical and market considerations. , 2000, Journal of molecular microbiology and biotechnology.

[4]  M. Tangney,et al.  Carbohydrate Uptake by the Phosphotransferase System and Other Mechanisms , 2005 .

[5]  R. Davies,et al.  Studies on the acetone-butyl alcohol fermentation: Intermediates in the fermentation of glucose by Cl. acetobutylicum. 3. Potassium as an essential factor in the fermentation of maize meal by Cl. acetobutylicum (BY). , 1942, The Biochemical journal.

[6]  F. Zimmermann,et al.  Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae , 2000, Yeast.

[7]  Philippe Soucaille,et al.  Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. , 2005, Metabolic engineering.

[8]  Hubert Bahl,et al.  Level of enzymes involved in acetate, butyrate, acetone and butanol formation by Clostridium acetobutylicum , 1983, European journal of applied microbiology and biotechnology.

[9]  C. L. Gabriel,et al.  Development of the Butyl-Acetonic Fermentation Industry , 1930 .

[10]  W. Moore,et al.  Acetone, Isopropanol, and Butanol Production by Clostridium beijerinckii (syn. Clostridium butylicum) and Clostridium aurantibutyricum , 1983, Applied and environmental microbiology.

[11]  J. Linden,et al.  Butanol toxicity in the butylic fermentation , 1981 .

[12]  Carbon monoxide gasing leads to alcohol production and butyrate uptake without acetone formation in continuous cultures of Clostridium acetobutylicum , 1986 .

[13]  S. Kyrtopoulos,et al.  Kinetic studies with phosphotransacetylase. , 1972, Biochimica et biophysica acta.

[14]  M. Inui,et al.  Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli , 2008, Applied Microbiology and Biotechnology.

[15]  J. Shaw,et al.  Properties of the glucose phosphotransferase system of Clostridium acetobutylicum NCIB 8052 , 1991, Applied and environmental microbiology.

[16]  H. Buc,et al.  Kinetics of the allosteric interactions of phosphofructokinase from Escherichia coli. , 1968, Journal of molecular biology.

[17]  Philippe Soucaille,et al.  Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824 , 1995 .

[18]  R. Thauer,et al.  The energy metabolism of Clostridium kluyveri. , 1968, European journal of biochemistry.

[19]  W. Mitchell,et al.  Analysis of the Mechanism and Regulation of Lactose Transport and Metabolism in Clostridium acetobutylicum ATCC 824 , 2007, Applied and Environmental Microbiology.

[20]  L. Huang,et al.  Transmembrane pH gradient and membrane potential in Clostridium acetobutylicum during growth under acetogenic and solventogenic conditions , 1985, Applied and environmental microbiology.

[21]  I. Adachi,et al.  Studies on the Acetone-Butanol Fermentation , 1958 .

[22]  L. K. Bowles,et al.  Effects of butanol on Clostridium acetobutylicum , 1985, Applied and environmental microbiology.

[23]  S. Mayhew,et al.  Purification and properties of electron-transferring flavoprotein from Peptostreptococcus elsdenii. , 1974, The Journal of biological chemistry.

[24]  H. Schlechte,et al.  Recombinant plasmid DNA variation of Clostridium oncolyticum--model experiments of cancerostatic gene transfer. , 1988, Zentralblatt fur Bakteriologie, Mikrobiologie, und Hygiene. Series A, Medical microbiology, infectious diseases, virology, parasitology.

[25]  R Gay,et al.  Regulation of the NADH and NADPH-ferredoxin oxidoreductases in clostridia of the butyric group. , 1976, Biochimica et biophysica acta.

[26]  F. Westheimer Coincidences, decarboxylation, and electrostatic effects , 1995 .

[27]  M. Hartmanis Butyrate kinase from Clostridium acetobutylicum. , 1987, The Journal of biological chemistry.

[28]  N. Torres,et al.  Design of Metabolic Engineering Strategies for Maximizing l‐(–)‐Carnitine Production by Escherichia coli. Integration of the Metabolic and Bioreactor Levels , 2008, Biotechnology progress.

[29]  S. Gatenbeck,et al.  Intermediary Metabolism in Clostridium acetobutylicum: Levels of Enzymes Involved in the Formation of Acetate and Butyrate , 1984, Applied and environmental microbiology.

[30]  D. T. Jones,et al.  Acetone-butanol fermentation revisited. , 1986, Microbiological reviews.

[31]  H. Bahl,et al.  Effect of pH and butyrate concentration on the production of acetone and butanol by Clostridium acetobutylicum grown in continuous culture , 1982, European journal of applied microbiology and biotechnology.

[32]  E. Papoutsakis,et al.  Enzymes limiting butanol and acetone formation in continuous and batch cultures of Clostridium acetobutylicum , 1989, Applied Microbiology and Biotechnology.

[33]  F. Rudolph,et al.  Cloning, sequencing, and expression of clustered genes encoding beta-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, crotonase, and butyryl-CoA dehydrogenase from Clostridium acetobutylicum ATCC 824 , 1996, Journal of bacteriology.

[34]  H. Petitdemange,et al.  Acetone-butanol production from pentoses by Clostridium acetobutylicum , 2004, Biotechnology Letters.

[35]  N. R. Blatherwick,et al.  THE UTILIZATION OF CALCIUM AND PHOSPHORUS OF VEGETABLES BY MAN , 1922 .

[36]  J. Kotzé Glycolytic and related enzymes in clostridial classification. , 1969, Applied microbiology.

[37]  C. Tomas,et al.  Transcriptional Analysis of Butanol Stress and Tolerance in Clostridium acetobutylicum , 2004, Journal of bacteriology.

[38]  M. Marquet,et al.  The phosphoenolpyruvate: methyl-α-D-glucoside phosphotransferase system in Bacillus subtilis Marburg: kinetic studies of enzyme II and evidence for a phosphoryl enzyme II intermediate , 1979 .

[39]  E. B. Fred,et al.  OXIDATION AND REDUCTION RELATIONS BETWEEN SUBSTRATE AND PRODUCTS IN THE ACETONEBUTYL ALCOHOL FERMENTATION , 1931 .

[40]  H. Kornberg,et al.  The uptake of glucose by a thermophilic Bacillus sp , 1972, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[41]  G. Gottschalk,et al.  Formation of n-Butanol from d-Glucose by Strains of the “Clostridium tetanomorphum” Group , 1984, Applied and environmental microbiology.

[42]  S. Kyrtopoulos,et al.  Kinetic studies with phosphotransacetylase. V. The mechanism of activation by univalent cations. , 1973, Biochimica et biophysica acta.

[43]  Fuli Li,et al.  The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features , 2008, Proceedings of the National Academy of Sciences.

[44]  D. R. Woods,et al.  The Clostridia and biotechnology , 1993 .

[45]  H. Gutfreund,et al.  Enzyme kinetics , 1975, Nature.

[46]  J. Engasser,et al.  The role of acids on the production of acetone and butanol by Clostridium acetobutylicum , 1985, Applied Microbiology and Biotechnology.

[47]  G. Gottschalk,et al.  Purification and characterization of the pyruvate-ferredoxin oxidoreductase from Clostridium acetobutylicum , 2004, Archives of Microbiology.

[48]  K. Uyeda,et al.  Crystallization and properties of phosphofructokinase from Clostridium pasteurianum. , 1970, The Journal of biological chemistry.

[49]  R. Gavard,et al.  Phosphotransbutyrylase de Clostridium acetobutylicum. , 1957 .

[50]  J. W. Peters,et al.  Homologous and Heterologous Overexpression in Clostridium acetobutylicum and Characterization of Purified Clostridial and Algal Fe-Only Hydrogenases with High Specific Activities , 2005, Applied and Environmental Microbiology.

[51]  J. Schwitzguébel,et al.  Metabolism of lactose by Clostridium thermolacticum growing in continuous culture , 2006, Archives of Microbiology.

[52]  R. Hutkins,et al.  Phosphotransferase Activity in Clostridium acetobutylicum from Acidogenic and Solventogenic Phases of Growth , 1986, Applied and environmental microbiology.

[53]  P. Dürre,et al.  Enzymatic investigations on butanol dehydrogenase and butyraldehyde dehydrogenase in extracts of Clostridium acetobutylicum , 1987, Applied Microbiology and Biotechnology.

[54]  Philippe Soucaille,et al.  Microbial Conversion of Glycerol to 1,3-Propanediol: Physiological Comparison of a Natural Producer, Clostridium butyricum VPI 3266, and an Engineered Strain, Clostridium acetobutylicum DG1(pSPD5) , 2006, Applied and Environmental Microbiology.

[55]  E. Papoutsakis,et al.  Coenzyme A transferase from Clostridium acetobutylicum ATCC 824 and its role in the uptake of acids , 1989, Applied and environmental microbiology.

[56]  Peter Dürre,et al.  Handbook on Clostridia , 2005 .

[57]  E. Papoutsakis,et al.  Dynamics of Genomic-Library Enrichment and Identification of Solvent Tolerance Genes for Clostridium acetobutylicum , 2007, Applied and Environmental Microbiology.

[58]  J. Perret,et al.  Kinetic study of a phosphoryl exchange reaction between fructose and fructose 1-phosphate catalyzed by the membrane-bound enzyme II of the phosphoenolpyruvate-fructose 1-phosphotransferase system of Bacillus subtilis. , 1979, European journal of biochemistry.

[59]  R. Wolfe,et al.  ROLE OF BUTYRYL PHOSPHATE IN THE ENERGY METABOLISM OF CLOSTRIDIUM TETANOMORPHUM , 1963, Journal of bacteriology.

[60]  J. Bailey,et al.  Toward a science of metabolic engineering , 1991, Science.

[61]  E I Garvie,et al.  Bacterial lactate dehydrogenases. , 1980, Microbiological reviews.

[62]  G. Gottschalk,et al.  Physiological Events in Clostridium acetobutylicum during the Shift from Acidogenesis to Solventogenesis in Continuous Culture and Presentation of a Model for Shift Induction , 1992, Applied and environmental microbiology.

[63]  J Spizek,et al.  Biotechnology advances. , 1990, Biotechnology advances.

[64]  George N. Bennett,et al.  The central metabolic pathway from acetyl-CoA to butyryl-CoA in Clostridium acetobutylicum , 1995 .

[65]  E. S. Younathan,et al.  Kinetic characteristics of phosphofructokinase from Bacillus stearothermophilus: MgATP nonallosterically inhibits the enzyme. , 1994, Biochemistry.

[66]  J. Russell,et al.  The acetate kinase ofClostridum acetobutylicum strain P262 , 1996, Archives of Microbiology.

[67]  M. A. Cynkin,et al.  Metabolism of pentoses by clostridia. I. Enzymes of ribose dissimilation in extracts of Clostridium perfringens. , 1958, Journal of bacteriology.

[68]  S. Junne,et al.  Antisense RNA Downregulation of Coenzyme A Transferase Combined with Alcohol-Aldehyde Dehydrogenase Overexpression Leads to Predominantly Alcohologenic Clostridium acetobutylicum Fermentations , 2003, Journal of bacteriology.

[69]  M. Williams,et al.  Cloning of a lactate dehydrogenase gene from Clostridium acetobutylicum B643 and expression in Escherichia coli , 1990, Applied and environmental microbiology.

[70]  Parameters affecting solvent production by Clostridium acetobutylicum in continuous culture , 1984 .

[71]  Butanol and Acetone from Corn1: A Description of the Fermentation Process , 1927 .

[72]  M. Yazdanian,et al.  Factors affecting utilization of carbohydrates by clostridia , 1995 .

[73]  L. Blank,et al.  Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene , 2001, Journal of Industrial Microbiology and Biotechnology.

[74]  P. Soucaille,et al.  Complete activity profile of Clostridium acetobutylicum [FeFe]-hydrogenase and kinetic parameters for endogenous redox partners. , 2007, FEMS microbiology letters.

[75]  B. Hess,et al.  Design of glycolysis. , 1981, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[76]  T. Klason,et al.  Uptake and activation of acetate and butyrate in Clostridium acetobutylicum , 1984, Applied Microbiology and Biotechnology.

[77]  R. Wolfe,et al.  Enzymatic phosphorylation of butyrate. , 1962, The Journal of biological chemistry.

[78]  W. D. de Vos,et al.  Substrate-Induced Production and Secretion of Cellulases by Clostridium acetobutylicum , 2004, Applied and Environmental Microbiology.

[79]  G. Bennett,et al.  Molecular cloning of an alcohol (butanol) dehydrogenase gene cluster from Clostridium acetobutylicum ATCC 824 , 1991, Journal of bacteriology.

[80]  P. Dürre,et al.  The glyceraldehyde-3-phosphate dehydrogenase of Clostridium acetobutylicum: isolation and purification of the enzyme, and sequencing and localization of the gap gene within a cluster of other glycolytic genes. , 1999, Microbiology.

[81]  P. Rogers,et al.  Purification and properties of the inducible coenzyme A-linked butyraldehyde dehydrogenase from Clostridium acetobutylicum , 1988, Journal of bacteriology.

[82]  W. Mitchell,et al.  Characterisation of a glucose phosphotransferase system in Clostridium acetobutylicum ATCC 824 , 2007, Applied Microbiology and Biotechnology.

[83]  A. Harden Bacterial Metabolism , 1930, Nature.

[84]  H. Blaschek,et al.  Genetic systems development in the clostridia , 1995 .

[85]  N. Torres,et al.  Metabolism of citric acid production by Aspergillus niger: model definition, steady-state analysis and constrained optimization of citric acid production rate. , 2000, Biotechnology and bioengineering.

[86]  George N. Bennett,et al.  Genome Sequence and Comparative Analysis of the Solvent-Producing Bacterium Clostridium acetobutylicum , 2001, Journal of bacteriology.

[87]  W. Hengstenberg,et al.  Carbohydrate transport in Staphylococcus aureus. VI. The nature of the derivatives accumulated. , 1968, The Journal of biological chemistry.

[88]  W. Wood,et al.  CHAPTER 2 – Fermentation of Carbohydrates and Related Compounds , 1961 .

[89]  S. Kyrtopoulos,et al.  Kinetic studies with phosphotransacetylase. IV. Inhibition by products. , 1972, Biochimica et biophysica acta.

[90]  G. L. Kenyon,et al.  Mechanism of the reaction catalyzed by acetoacetate decarboxylase. Importance of lysine 116 in determining the pKa of active-site lysine 115. , 1996, Biochemistry.

[91]  P. Soucaille,et al.  Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool , 1994, Journal of bacteriology.

[92]  Hans G. Schlegel,et al.  β-Ketothiolase from Hydrogenomonas eutropha H16 and its significance in the regulation of poly-β-hydroxybutyrate metabolism , 1973 .

[93]  C. Tomas,et al.  Overexpression of groESL in Clostridium acetobutylicum Results in Increased Solvent Production and Tolerance, Prolonged Metabolism, and Changes in the Cell's Transcriptional Program , 2003, Applied and Environmental Microbiology.

[94]  Professor Herbert J. Fromm Ph. D. Initial Rate Enzyme Kinetics , 1975, Molecular Biology Biochemistry and Biophysics.

[95]  P. Soucaille,et al.  Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol , 1994, Journal of bacteriology.

[96]  Nasib Qureshi,et al.  Butanol Production from Corn Fiber Xylan Using Clostridium acetobutylicum , 2006, Biotechnology progress.

[97]  R. Yan,et al.  Coenzyme A-acylating aldehyde dehydrogenase from Clostridium beijerinckii NRRL B592 , 1990, Applied and environmental microbiology.

[98]  J. Johnson,et al.  Taxonomy of the Clostridia: Wall Composition and DNA Homologies in Clostridium butyricum and Other Butyric Acid-producing Clostridia , 1971 .

[99]  J C Rabinowitz,et al.  Pyruvate-ferredoxin oxidoreductase. IV. Studies on the reaction mechanism. , 1971, The Journal of biological chemistry.

[100]  ANNE CLAYTON,et al.  Industrial Microbiology , 1968, Nature.

[101]  L. Häggström,et al.  Calcium alginate immobilized cells of clostridium acetobutylicum for solvent production , 1980, Biotechnology Letters.

[102]  Emil L. Smith Principles of Biochemistry: General Aspects , 1983 .

[103]  Hubert Bahl,et al.  Continuous production of acetone and butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostat , 2004, European journal of applied microbiology and biotechnology.

[104]  J. Lanen,et al.  Butyl Alcohol from Xylose Saccharification Liquors from Corncobs , 1948 .

[105]  R. Thauer,et al.  Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia. , 1973, Biochimica et biophysica acta.

[106]  P. Dürre,et al.  Acetate kinase from Clostridium acetobutylicum: a highly specific enzyme that is actively transcribed during acidogenesis and solventogenesis. , 1997, Microbiology.

[107]  E. Papoutsakis,et al.  Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? , 2000, Biotechnology and bioengineering.

[108]  H. Schlegel,et al.  Kinetics and properties of β-ketothiolase from Clostridium pasteurianum , 1975, Archives of Microbiology.

[109]  E. Simon The formation of lactic acid by Clostridium acetobutylicum (Weizmann). , 1947, Archives of biochemistry.

[110]  A. Compere,et al.  Evaluation of substrates for butanol production , 1979 .

[111]  A. Stams,et al.  Utilisation of biomass for the supply of energy carriers , 1999, Applied Microbiology and Biotechnology.

[112]  E. Voit,et al.  Pathway Analysis and Optimization in Metabolic Engineering , 2002 .

[113]  D. Kell,et al.  On the permeability to weak acids and bases of the cytoplasmic membrane of Clostridium pasteurianum. , 1981, Biochemical and biophysical research communications.

[114]  E. Papoutsakis,et al.  Thiolase from Clostridium acetobutylicum ATCC 824 and Its Role in the Synthesis of Acids and Solvents , 1988, Applied and environmental microbiology.

[115]  T. Yagi,et al.  The electron carrier specificities of the hydrogenases of different origins. , 1966, Biochemical and biophysical research communications.

[116]  Hubert Bahl,et al.  Introduction to the Physiology and Biochemistry of the Genus Clostridium , 1989 .

[117]  R. Wolfe,et al.  Purification and role of phosphotransbutyrylase. , 1960, The Journal of biological chemistry.

[118]  H. A. George,et al.  Acidic Conditions Are Not Obligatory for Onset of Butanol Formation by Clostridium beijerinckii (Synonym, C. butylicum) , 1983, Applied and environmental microbiology.

[119]  I. Fridovich Inhibition of acetoacetic decarboxylase by anions. The Hofmeister lyotropic series. , 1963, The Journal of biological chemistry.

[120]  S. Hiu,et al.  Butanol-Ethanol Dehydrogenase and Butanol-Ethanol-Isopropanol Dehydrogenase: Different Alcohol Dehydrogenases in Two Strains of Clostridium beijerinckii (Clostridium butylicum) , 1987, Applied and environmental microbiology.

[121]  Purification and properties of 3-hydroxybutyryl-coenzyme A dehydrogenase from Clostridium beijerinckii ("Clostridium butylicum") NRRL B593 , 1992, Applied and environmental microbiology.

[122]  H. Petitdemange,et al.  Regulation of acetate kinase and butyrate kinase by acids in Clostridium acetobutylicum , 1986 .

[123]  G. Raval,et al.  Regulation and butanol inhibition of D-xylose and D-glucose uptake in Clostridium acetobutylicum , 1985, Applied and environmental microbiology.

[124]  J. Gottschal,et al.  Non-production of acetone and butanol by Clostridiumacetobutylicum during glucose- and ammonium- limitation in continuous culture , 1981, Biotechnology Letters.

[125]  B. McClane,et al.  The clostridia: molecular biology and pathogenesis , 1997 .

[126]  I. Maddox Production of n-butanol from whey filtrate using clostridium acetobutylicum N.C.I.B. 2951 , 1980, Biotechnology Letters.

[127]  G. Gottschalk,et al.  L(+)-lactate dehydrogenase of Clostridium acetobutylicum is activated by fructose-1,6-bisphosphate , 1987 .

[128]  J. G. Morris,et al.  The induction of acetone and butanol production in cultures of Clostridium acetobutylicum by elevated concentrations of acetate and butyrate , 1981 .

[129]  Jiann-Shin Chen,et al.  Alcohol dehydrogenase: multiplicity and relatedness in the solvent-producing clostridia. , 1995, FEMS microbiology reviews.

[130]  L. Brand,et al.  [16] Phosphofruktokinase from Escherichia coli , 1975 .

[131]  E. Papoutsakis,et al.  Molecular characterization of two Clostridium acetobutylicum ATCC 824 butanol dehydrogenase isozyme genes , 1992, Journal of bacteriology.

[132]  G. Gottschalk,et al.  Purification and properties of NADP-dependent L(+)-3-hydroxybutyryl-CoA dehydrogenase from Clostridium kluyveri. , 1973, European journal of biochemistry.

[133]  S. L. Rosenberg Fermentation of pentose sugars to ethanol and other neutral products by microorganisms , 1980 .

[134]  D. Oesterhelt,et al.  Purification and properties of two 2-oxoacid:ferredoxin oxidoreductases from Halobacterium halobium. , 1981, European journal of biochemistry.

[135]  J F Morrison,et al.  Approaches to kinetic studies on metal-activated enzymes. , 1979, Methods in enzymology.

[136]  G. Bennett,et al.  Cloning, Sequence, and Expression of the Phosphofructokinase Gene of Clostridium acetobutylicum ATCC 824 in Escherichia coli , 1998, Current Microbiology.

[137]  J. Hugenholtz,et al.  Acetogenic and Acid-Producing Clostridia , 1989 .

[138]  J. Andrade,et al.  Regulation of Carbon and Electron Flow inClostridium butyricum VPI 3266 Grown on Glucose-Glycerol Mixtures , 2001, Journal of bacteriology.

[139]  L. Hindorff,et al.  Expression of a Cloned Cyclopropane Fatty Acid Synthase Gene Reduces Solvent Formation in Clostridium acetobutylicum ATCC 824 , 2003, Applied and Environmental Microbiology.

[140]  David T. Jones,et al.  Cloning and Expression of a Clostridium acetobutylicum Alcohol Dehydrogenase Gene in Escherichia coli , 1988, Applied and environmental microbiology.

[141]  G. Gottschalk,et al.  Coenzyme specificity of dehydrogenases and fermentation of pyruvate by clostridia , 2004, Archiv für Mikrobiologie.

[142]  N. Kaplan,et al.  Purification, properties, and kinetic mechanism of coenzyme A-linked aldehyde dehydrogenase from Clostridium kluyveri. , 1980, Archives of biochemistry and biophysics.

[143]  H. Hassall Bacterial Metabolism (2nd Edition) , 1977 .

[144]  W. M. Ingledew,et al.  The acetone-butanol-ethanol fermentation. , 1988, Critical reviews in microbiology.

[145]  P. Soucaille,et al.  Transmembrane pH of Clostridium acetobutylicum is inverted (more acidic inside) when the in vivo activity of hydrogenase is decreased , 1994, Journal of bacteriology.

[146]  Eva R. Kashket,et al.  Intracellular Conditions Required for Initiation of Solvent Production by Clostridium acetobutylicum , 1986, Applied and environmental microbiology.

[147]  H. Connell The Study and Treatment of Cancer by Proteolytic Enzymes: Preliminary Report. , 1935, Canadian Medical Association journal.

[148]  E. Papoutsakis,et al.  The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain , 1997, Journal of bacteriology.

[149]  J. Meyer,et al.  Classification and phylogeny of hydrogenases. , 2001, FEMS microbiology reviews.

[150]  H. Bahl,et al.  Nutritional Factors Affecting the Ratio of Solvents Produced by Clostridium acetobutylicum , 1986, Applied and environmental microbiology.

[151]  P. Engel,et al.  Butyryl-CoA dehydrogenase from Megasphaera elsdenii. Specificity of the catalytic reaction. , 1984, The Biochemical journal.

[152]  J. Wiegel,et al.  The potential of thermophilic clostridia in biotechnology , 1993 .

[153]  J. Zeikus Chemical and fuel production by anaerobic bacteria. , 1980, Annual review of microbiology.

[154]  K. Uyeda,et al.  Pyruvate-ferredoxin oxidoreductase. 3. Purification and properties of the enzyme. , 1971, The Journal of biological chemistry.

[155]  D. T. Jones,et al.  Homology between hydroxybutyryl and hydroxyacyl coenzyme A dehydrogenase enzymes from Clostridium acetobutylicum fermentation and vertebrate fatty acid beta-oxidation pathways , 1989, Journal of bacteriology.

[156]  P. Postma,et al.  Phosphoenolpyruvate:carbohydrate phosphotransferase system of bacteria. , 1985, Microbiological reviews.

[157]  G. C. Robinson A STUDY OF THE ACETONE AND BUTYL ALCOHOL FERMENTATION OF VARIOUS CARBOHYDRATES , 1922 .

[158]  George N. Bennett,et al.  Intracellular Butyryl Phosphate and Acetyl Phosphate Concentrations in Clostridium acetobutylicum and Their Implications for Solvent Formation , 2005, Applied and Environmental Microbiology.

[159]  L. Ljungdahl,et al.  Purification and properties of acetate kinase from Clostridium thermoaceticum , 2004, Archives of Microbiology.

[160]  G. Bennett,et al.  Cloning, sequencing, and expression of genes encoding phosphotransacetylase and acetate kinase from Clostridium acetobutylicum ATCC 824 , 1996, Applied and environmental microbiology.

[161]  H. Petitdemange,et al.  Induction of acetoacetate decarboxylase in Clostridium acetobutylicum , 1985 .

[162]  G. Bennett,et al.  Identification and characterization of a second butyrate kinase from Clostridium acetobutylicum ATCC 824. , 2000, Journal of molecular microbiology and biotechnology.

[163]  I. Fridovich A study of the interaction of acetoacetic decarboxylase with several inhibitors. , 1968, The Journal of biological chemistry.

[164]  H. Petitdemange,et al.  Iron effect on acetone-butanol fermentation , 1988, Current Microbiology.

[165]  J. Wiegel Formation of ethanol by bacteria. A pledge for the use of extreme thermophilic anaerobic bacteria in industrial ethanol fermentation processes , 1980, Experientia.

[166]  E. Papoutsakis,et al.  Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. , 1996, Microbiology.

[167]  R. Davies Studies on the acetone-butanol fermentation: 4. Acetoacetic acid decarboxylase of Cl. acetobutylicum (BY). , 1943, The Biochemical journal.

[168]  M. Marquet,et al.  Separation of components of the phosphoenolpyruvate-glucose phosphotransferase system from Bacillus subtilis Marburg. , 1971, Biochimie.

[169]  Eberhard O. Voit,et al.  Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists , 2000 .

[170]  P. Rogers Genetics and Biochemistry of Clostridium Relevant to Development of Fermentation Processes , 1986 .

[171]  G. Gottschalk,et al.  The internal pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation , 1985, Archives of Microbiology.

[172]  Byung Hong Kim,et al.  Control of Carbon and Electron Flow in Clostridium acetobutylicum Fermentations: Utilization of Carbon Monoxide to Inhibit Hydrogen Production and to Enhance Butanol Yields , 1984, Applied and environmental microbiology.

[173]  R. Davies,et al.  Studies on the acetone-butyl alcohol fermentation: Nutritional and other factors involved in the preparation of active suspensions of Cl. acetobutylicum (Weizmann). , 1941, The Biochemical journal.

[174]  P. Dürre Fermentative Butanol Production , 2008, Annals of the New York Academy of Sciences.

[175]  C. T. Calam Isolation of Clostridium acetobutylicum strains producing butanol and acetone , 1980, Biotechnology Letters.

[176]  Kevin M. Smith,et al.  Metabolic engineering of Escherichia coli for 1-butanol production. , 2008, Metabolic engineering.

[177]  Valentine Rc,et al.  Purification and role of phosphotransbutyrylase. , 1960 .

[178]  W. Mitchell,et al.  Physiology of carbohydrate to solvent conversion by clostridia. , 1998, Advances in microbial physiology.

[179]  M. Yassein,et al.  The fermentative production of acetone-butanol by Clostridium acetobutylicum. , 1976, Acta biologica Academiae Scientiarum Hungaricae.

[180]  S. Ragsdale,et al.  Mechanism of the Clostridium thermoaceticum pyruvate:ferredoxin oxidoreductase: evidence for the common catalytic intermediacy of the hydroxyethylthiamine pyropyrosphate radical. , 1997, Biochemistry.

[181]  M. Adams,et al.  The structure and mechanism of iron-hydrogenases. , 1990, Biochimica et biophysica acta.

[182]  B. Guigliarelli,et al.  Hydrogen-activating enzymes: activity does not correlate with oxygen sensitivity. , 2008, Angewandte Chemie.

[183]  L. Yerushalmi,et al.  Effect of increased hydrogen partial pressure on the acetone-butanol fermentation by Clostridium acetobutylicum , 1985, Applied Microbiology and Biotechnology.

[184]  E. Papoutsakis,et al.  Purification and characterization of the NADH-dependent butanol dehydrogenase from Clostridium acetobutylicum (ATCC 824). , 1989, Archives of biochemistry and biophysics.

[185]  P. Hernández TRANSPORT OF D-GLUCOSE IN CLOSTRIDIUM THERMOCELLUM ATCC-27405 , 1982 .

[186]  B. Montenecourt,et al.  Effect of butanol on lipid composition and fluidity of Clostridium acetobutylicum ATCC 824 , 1984, Applied and environmental microbiology.

[187]  E. Papoutsakis,et al.  The effect of CO on growth and product formation in batch cultures ofClostridium acetobutylicum , 2005, Biotechnology Letters.

[188]  E. Papoutsakis,et al.  Phosphotransbutyrylase from Clostridium acetobutylicum ATCC 824 and its role in acidogenesis , 1989, Applied and environmental microbiology.

[189]  R. Hill,et al.  Purification and characterization of crotonase from Clostridium acetobutylicum. , 1972, The Journal of biological chemistry.

[190]  E. Papoutsakis,et al.  Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance. , 2008, Metabolic engineering.

[191]  J. S. Chen,et al.  Purification and properties of hydrogenase from Clostridium pasteurianum W5. , 1974, Biochimica et biophysica acta.

[192]  P. Claassen,et al.  Acetone, butanol and ethanol production from domestic organic waste by solventogenic clostridia. , 2000, Journal of molecular microbiology and biotechnology.