Heteroepitaxial wurtzite and zinc‐blende structure GaN grown by reactive‐ion molecular‐beam epitaxy: Growth kinetics, microstructure, and properties

Reactive‐ion molecular‐beam epitaxy has been used to grow epitaxial hexagonal‐structure α‐GaN on Al2O3(0001) and Al2O3(0112) substrates and metastable zinc‐blende‐structure β‐GaN on MgO(001) under the following conditions: growth temperature Ts=450–800 °C; incident N+2/Ga flux ratio JN+2/JGa=1–5; and N+2 kinetic energy EN+2=35–90 eV. The surface structure of the α‐GaN films was (1×1), with an ≊3% contraction in the in‐plane lattice constant for films grown on Al2O3(0001), while the β‐GaN films exhibited a 90°‐rotated two‐domain (4×1) reconstruction. Using a combination of in situ reflection high‐energy electron diffraction, double‐crystal x‐ray diffraction, and cross‐sectional transmission electron microscopy, the film/substrate epitaxial relationships were determined to be: (0001)GaN∥ (0001)Al2O3 with [2110]GaN∥[1100]Al2O3 and [1100]GaN∥[1210]Al2O3, (2110)GaN∥(0112)Al2O3 with [0001]GaN∥[0111]Al2O3 and [0110]GaN∥[2110]Al2O3, and (001)GaN∥(001)MgO with [001]GaN∥[001]MgO.Films with the lowest e...

[1]  P. Fons,et al.  Molecular dynamics and quasidynamics simulations of low-energy ion/surface interactions leading to decreased epitaxial temperatures and increased dopant incorporation probabilities during Si MBE , 1991 .

[2]  Shuji Nakamura,et al.  GaN Growth Using GaN Buffer Layer , 1991 .

[3]  W. J. Choyke,et al.  An investigation of the properties of cubic GaN grown on GaAs by plasma‐assisted molecular‐beam epitaxy , 1991 .

[4]  Sadafumi Yoshida,et al.  Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN‐coated sapphire substrates , 1983 .

[5]  J. A. Van Vechten,et al.  Quantum Dielectric Theory of Electronegativity in Covalent Systems. III. Pressure-Temperature Phase Diagrams, Heats of Mixing, and Distribution Coefficients , 1973 .

[6]  S. Yoshida,et al.  Epitaxial growth of GaN/AlN heterostructures , 1983 .

[7]  Bo Monemar,et al.  Luminescence in epitaxial GaN : Cd , 1974 .

[8]  R. Powell,et al.  Growth of GaN(0001)1×1 on Al2O3(0001) by gas‐source molecular beam epitaxy , 1992 .

[9]  H. F. Winters Ionic Adsorption and Dissociation Cross Section for Nitrogen , 1966 .

[10]  T. Chu,et al.  Gallium Nitride Films , 1971 .

[11]  Sadafumi Yoshida,et al.  Epitaxial growth of cubic and hexagonal GaN on GaAs by gas‐source molecular‐beam epitaxy , 1991 .

[12]  P. Fons,et al.  Molecular dynamics and quasidynamics simulations of the annealing of bulk and near‐surface interstitials formed in molecular‐beam epitaxial Si due to low‐energy particle bombardment during deposition , 1991 .

[13]  Chan,et al.  First-principles total-energy calculation of gallium nitride. , 1992, Physical review. B, Condensed matter.

[14]  Y. Morimoto,et al.  Vapor Phase Epitaxial Growth of GaN on GaAs , GaP , Si, and Sapphire Substrates from GaBr3 and NH 3 , 1973 .

[15]  Shuji Nakamura,et al.  Novel metalorganic chemical vapor deposition system for GaN growth , 1991 .

[16]  Y. Kobayashi,et al.  Preparation and properties of III‐V nitride thin films , 1989 .

[17]  H. R. Kaufman,et al.  Low Energy Ion Beam Etching , 1981 .

[18]  J. J. Tietjen,et al.  THE PREPARATION AND PROPERTIES OF VAPOR‐DEPOSITED SINGLE‐CRYSTAL‐LINE GaN , 1969 .

[19]  R. J. Paff,et al.  Thermal expansion of AlN, sapphire, and silicon , 1974 .

[20]  J. Karpinski,et al.  Equilibrium pressure of N2 over GaN and high pressure solution growth of GaN , 1984 .

[21]  H. M. Manasevit,et al.  The Use of Metalorganics in the Preparation of Semiconductor Materials IV . The Nitrides of Aluminum and Gallium , 1971 .

[22]  Theodore D. Moustakas,et al.  Epitaxial growth of zinc blende and wurtzitic gallium nitride thin films on (001) silicon , 1991 .

[23]  J. Knights,et al.  Plasma deposition of GaP and GaN , 1978 .

[24]  A. Rockett,et al.  Incorporation of accelerated low-energy (50-500 eV) In + ions in Si(100) films during growth by molecular-beam epitaxy , 1989 .

[25]  D. Kahng,et al.  Preparation and Structural Properties of GaN Thin Films , 1969 .

[26]  D. K. Ferry,et al.  Hot electron microwave conductivity of wide bandgap semiconductors , 1976 .

[27]  T. Sasaki,et al.  Substrate‐polarity dependence of metal‐organic vapor‐phase epitaxy‐grown GaN on SiC , 1988 .

[28]  Masashi Mizuta,et al.  Low Temperature Growth of GaN and AlN on GaAs Utilizing Metalorganics and Hydrazine , 1986 .

[29]  H. Amano,et al.  Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer , 1986 .

[30]  D. Elwell,et al.  Crystal growth of gallium nitride , 1988 .

[31]  N. Itoh,et al.  A new technique for crystallographic characterization of heteroepitaxial crystal films , 1988 .

[32]  S. Zembutsu,et al.  Growth of GaN single crystal films using electron cyclotron resonance plasma excited metalorganic vapor phase epitaxy , 1986 .

[33]  H. Amano,et al.  Growth of single crystal GaN substrate using hydride vapor phase epitaxy , 1990 .

[34]  R. Davis III-V nitrides for electronic and optoelectronic applications , 1991, Proc. IEEE.

[35]  H. Amano,et al.  Effects of the buffer layer in metalorganic vapour phase epitaxy of GaN on sapphire substrate , 1988 .

[36]  Peter Lawætz Stability of the Wurtzite Structure , 1972 .

[37]  Harold R. Kaufman,et al.  Technology and applications of broad-beam ion sources used in sputtering. Part I. Ion source technology , 1982 .

[38]  D. Emin,et al.  Novel refractory semiconductors , 1987 .

[39]  R. Madar,et al.  Growth anisotropy in the GaN/Al2O3 system , 1977 .

[40]  R. K. Crouch,et al.  Properties of GaN grown on sapphire substrates , 1978 .

[41]  M. Kobayashi,et al.  The growth of c-axis-oriented GaN films by D.C.-biased reactive sputtering , 1985 .

[42]  J. Knall,et al.  Electrical properties of Si films doped with 200‐eV In+ ions during growth by molecular‐beam epitaxy , 1989 .

[43]  S. Zembutsu,et al.  Substrate‐orientation dependence of GaN single‐crystal films grown by metalorganic vapor‐phase epitaxy , 1987 .

[44]  Marc Ilegems,et al.  Electrical properties of n-type vapor-grown gallium nitride , 1973 .

[45]  S. Misawa,et al.  Properties of AlxGa1−xN films prepared by reactive molecular beam epitaxy , 1982 .

[46]  M. Ilegems Vapor epitaxy of gallium nitride , 1972 .

[47]  Robert F. Davis,et al.  Growth of cubic phase gallium nitride by modified molecular‐beam epitaxy , 1989 .

[48]  J. Pankove,et al.  On the thermal decomposition of GaN in vacuum , 1974 .

[49]  R. M. Kolbas,et al.  Growth of high optical and electrical quality GaN layers using low‐pressure metalorganic chemical vapor deposition , 1991 .

[50]  P. Bridenbaugh,et al.  Thermal stability of indium nitride at elevated temperatures and nitrogen pressures , 1970 .

[51]  Isamu Akasaki,et al.  Effects of ain buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1−xAlxN (0 < x ≦ 0.4) films grown on sapphire substrate by MOVPE , 1989 .

[52]  M. Paisley,et al.  Structural Defects in GaN Epilayers Grown by Gas Source Molecular Beam Epitaxy , 1989 .

[53]  S. Nakamura,et al.  Highly P-Typed Mg-Doped GaN Films Grown with GaN Buffer Layers , 1991 .

[54]  M. Khan,et al.  Electrical properties and ion implantation of epitaxial GaN, grown by low pressure metalorganic chemical vapor deposition , 1983 .

[55]  R. W. Brander,et al.  Growth of epitaxial layers of gallium nitride on silicon carbide and corundum substrates , 1971 .

[56]  B. Mathur,et al.  The growth of highly resistive gallium nitride films , 1980 .

[57]  H. Hovel,et al.  Electrical and Optical Properties of rf‐Sputtered GaN and InN , 1972 .

[58]  N. Puychevrier,et al.  Synthesis of III–V semiconductor nitrides by reactive cathodic sputtering , 1976 .

[59]  R. Franzheld,et al.  Organometallic Vapour Phase Epitaxy of Galliumnitride Using Ga(CH3)3 · N(CH3)3-Adduct Pyrolysis , 1986 .

[60]  I. Ortenburger,et al.  Band Structure and Reflectivity of GaN , 1974 .

[61]  C. P. Flynn,et al.  Growth of single-crystal metal superlattices in chosen orientations , 1982 .

[62]  Barberán,et al.  Charged-particle interaction with liquids: Ripplon excitations. , 1989, Physical review. B, Condensed matter.

[63]  R. Powell,et al.  Energy and mass‐resolved detection of neutral and ion species using modulated‐pole‐bias quadrupole mass spectroscopy , 1990 .

[64]  H. Gotoh,et al.  Low Temperature Growth of Gallium Nitride , 1981 .

[65]  R. C. Powell,et al.  Growth of High-Resistivity Wurtzite and Zincblende Structure Single Crystal Gan by Reactive-Ion Molecular Beam Epitaxy , 1989 .

[66]  P. Fons,et al.  Molecular dynamics simulations of low-energy particle bombardment effects during vapor-phase crystal growth: 10 eV Si atoms incident on Si(001)2×1 surfaces , 1990 .

[67]  H. Amano,et al.  Cathodoluminescence of MOVPE-grown GaN layer on α-Al2O3 , 1990 .

[68]  R. Powell,et al.  Synthesis of metastable epitaxial zinc‐blende‐structure AlN by solid‐state reaction , 1992 .

[69]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .