Heteroepitaxial wurtzite and zinc‐blende structure GaN grown by reactive‐ion molecular‐beam epitaxy: Growth kinetics, microstructure, and properties
暂无分享,去创建一个
Nae-Eung Lee | R. C. Powell | Young-Seok Kim | R. Powell | N. Lee | young-Seok Kim | J. Greene | J. E. Greene
[1] P. Fons,et al. Molecular dynamics and quasidynamics simulations of low-energy ion/surface interactions leading to decreased epitaxial temperatures and increased dopant incorporation probabilities during Si MBE , 1991 .
[2] Shuji Nakamura,et al. GaN Growth Using GaN Buffer Layer , 1991 .
[3] W. J. Choyke,et al. An investigation of the properties of cubic GaN grown on GaAs by plasma‐assisted molecular‐beam epitaxy , 1991 .
[4] Sadafumi Yoshida,et al. Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN‐coated sapphire substrates , 1983 .
[5] J. A. Van Vechten,et al. Quantum Dielectric Theory of Electronegativity in Covalent Systems. III. Pressure-Temperature Phase Diagrams, Heats of Mixing, and Distribution Coefficients , 1973 .
[6] S. Yoshida,et al. Epitaxial growth of GaN/AlN heterostructures , 1983 .
[7] Bo Monemar,et al. Luminescence in epitaxial GaN : Cd , 1974 .
[8] R. Powell,et al. Growth of GaN(0001)1×1 on Al2O3(0001) by gas‐source molecular beam epitaxy , 1992 .
[9] H. F. Winters. Ionic Adsorption and Dissociation Cross Section for Nitrogen , 1966 .
[10] T. Chu,et al. Gallium Nitride Films , 1971 .
[11] Sadafumi Yoshida,et al. Epitaxial growth of cubic and hexagonal GaN on GaAs by gas‐source molecular‐beam epitaxy , 1991 .
[12] P. Fons,et al. Molecular dynamics and quasidynamics simulations of the annealing of bulk and near‐surface interstitials formed in molecular‐beam epitaxial Si due to low‐energy particle bombardment during deposition , 1991 .
[13] Chan,et al. First-principles total-energy calculation of gallium nitride. , 1992, Physical review. B, Condensed matter.
[14] Y. Morimoto,et al. Vapor Phase Epitaxial Growth of GaN on GaAs , GaP , Si, and Sapphire Substrates from GaBr3 and NH 3 , 1973 .
[15] Shuji Nakamura,et al. Novel metalorganic chemical vapor deposition system for GaN growth , 1991 .
[16] Y. Kobayashi,et al. Preparation and properties of III‐V nitride thin films , 1989 .
[17] H. R. Kaufman,et al. Low Energy Ion Beam Etching , 1981 .
[18] J. J. Tietjen,et al. THE PREPARATION AND PROPERTIES OF VAPOR‐DEPOSITED SINGLE‐CRYSTAL‐LINE GaN , 1969 .
[19] R. J. Paff,et al. Thermal expansion of AlN, sapphire, and silicon , 1974 .
[20] J. Karpinski,et al. Equilibrium pressure of N2 over GaN and high pressure solution growth of GaN , 1984 .
[21] H. M. Manasevit,et al. The Use of Metalorganics in the Preparation of Semiconductor Materials IV . The Nitrides of Aluminum and Gallium , 1971 .
[22] Theodore D. Moustakas,et al. Epitaxial growth of zinc blende and wurtzitic gallium nitride thin films on (001) silicon , 1991 .
[23] J. Knights,et al. Plasma deposition of GaP and GaN , 1978 .
[24] A. Rockett,et al. Incorporation of accelerated low-energy (50-500 eV) In + ions in Si(100) films during growth by molecular-beam epitaxy , 1989 .
[25] D. Kahng,et al. Preparation and Structural Properties of GaN Thin Films , 1969 .
[26] D. K. Ferry,et al. Hot electron microwave conductivity of wide bandgap semiconductors , 1976 .
[27] T. Sasaki,et al. Substrate‐polarity dependence of metal‐organic vapor‐phase epitaxy‐grown GaN on SiC , 1988 .
[28] Masashi Mizuta,et al. Low Temperature Growth of GaN and AlN on GaAs Utilizing Metalorganics and Hydrazine , 1986 .
[29] H. Amano,et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer , 1986 .
[30] D. Elwell,et al. Crystal growth of gallium nitride , 1988 .
[31] N. Itoh,et al. A new technique for crystallographic characterization of heteroepitaxial crystal films , 1988 .
[32] S. Zembutsu,et al. Growth of GaN single crystal films using electron cyclotron resonance plasma excited metalorganic vapor phase epitaxy , 1986 .
[33] H. Amano,et al. Growth of single crystal GaN substrate using hydride vapor phase epitaxy , 1990 .
[34] R. Davis. III-V nitrides for electronic and optoelectronic applications , 1991, Proc. IEEE.
[35] H. Amano,et al. Effects of the buffer layer in metalorganic vapour phase epitaxy of GaN on sapphire substrate , 1988 .
[36] Peter Lawætz. Stability of the Wurtzite Structure , 1972 .
[37] Harold R. Kaufman,et al. Technology and applications of broad-beam ion sources used in sputtering. Part I. Ion source technology , 1982 .
[38] D. Emin,et al. Novel refractory semiconductors , 1987 .
[39] R. Madar,et al. Growth anisotropy in the GaN/Al2O3 system , 1977 .
[40] R. K. Crouch,et al. Properties of GaN grown on sapphire substrates , 1978 .
[41] M. Kobayashi,et al. The growth of c-axis-oriented GaN films by D.C.-biased reactive sputtering , 1985 .
[42] J. Knall,et al. Electrical properties of Si films doped with 200‐eV In+ ions during growth by molecular‐beam epitaxy , 1989 .
[43] S. Zembutsu,et al. Substrate‐orientation dependence of GaN single‐crystal films grown by metalorganic vapor‐phase epitaxy , 1987 .
[44] Marc Ilegems,et al. Electrical properties of n-type vapor-grown gallium nitride , 1973 .
[45] S. Misawa,et al. Properties of AlxGa1−xN films prepared by reactive molecular beam epitaxy , 1982 .
[46] M. Ilegems. Vapor epitaxy of gallium nitride , 1972 .
[47] Robert F. Davis,et al. Growth of cubic phase gallium nitride by modified molecular‐beam epitaxy , 1989 .
[48] J. Pankove,et al. On the thermal decomposition of GaN in vacuum , 1974 .
[49] R. M. Kolbas,et al. Growth of high optical and electrical quality GaN layers using low‐pressure metalorganic chemical vapor deposition , 1991 .
[50] P. Bridenbaugh,et al. Thermal stability of indium nitride at elevated temperatures and nitrogen pressures , 1970 .
[51] Isamu Akasaki,et al. Effects of ain buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1−xAlxN (0 < x ≦ 0.4) films grown on sapphire substrate by MOVPE , 1989 .
[52] M. Paisley,et al. Structural Defects in GaN Epilayers Grown by Gas Source Molecular Beam Epitaxy , 1989 .
[53] S. Nakamura,et al. Highly P-Typed Mg-Doped GaN Films Grown with GaN Buffer Layers , 1991 .
[54] M. Khan,et al. Electrical properties and ion implantation of epitaxial GaN, grown by low pressure metalorganic chemical vapor deposition , 1983 .
[55] R. W. Brander,et al. Growth of epitaxial layers of gallium nitride on silicon carbide and corundum substrates , 1971 .
[56] B. Mathur,et al. The growth of highly resistive gallium nitride films , 1980 .
[57] H. Hovel,et al. Electrical and Optical Properties of rf‐Sputtered GaN and InN , 1972 .
[58] N. Puychevrier,et al. Synthesis of III–V semiconductor nitrides by reactive cathodic sputtering , 1976 .
[59] R. Franzheld,et al. Organometallic Vapour Phase Epitaxy of Galliumnitride Using Ga(CH3)3 · N(CH3)3-Adduct Pyrolysis , 1986 .
[60] I. Ortenburger,et al. Band Structure and Reflectivity of GaN , 1974 .
[61] C. P. Flynn,et al. Growth of single-crystal metal superlattices in chosen orientations , 1982 .
[62] Barberán,et al. Charged-particle interaction with liquids: Ripplon excitations. , 1989, Physical review. B, Condensed matter.
[63] R. Powell,et al. Energy and mass‐resolved detection of neutral and ion species using modulated‐pole‐bias quadrupole mass spectroscopy , 1990 .
[64] H. Gotoh,et al. Low Temperature Growth of Gallium Nitride , 1981 .
[65] R. C. Powell,et al. Growth of High-Resistivity Wurtzite and Zincblende Structure Single Crystal Gan by Reactive-Ion Molecular Beam Epitaxy , 1989 .
[66] P. Fons,et al. Molecular dynamics simulations of low-energy particle bombardment effects during vapor-phase crystal growth: 10 eV Si atoms incident on Si(001)2×1 surfaces , 1990 .
[67] H. Amano,et al. Cathodoluminescence of MOVPE-grown GaN layer on α-Al2O3 , 1990 .
[68] R. Powell,et al. Synthesis of metastable epitaxial zinc‐blende‐structure AlN by solid‐state reaction , 1992 .
[69] R. Bechmann,et al. Numerical data and functional relationships in science and technology , 1969 .