Correcting distortion of image by image registration

We propose a method for correcting image distortion due to camera lenses by calibrating intrinsic camera parameters. The proposed method is based on image registration and doesn’t require point-to-point correspondence. Parameters of three successive transformations –– view change, radial distortion and illumination change –– are estimated using the Gauss-Newton method. Estimating all 19 unknowns simultaneously, we introduce the implicit function theorem for calculating the Jacobian. To avoid local minima, we first estimate parameters for view change and employ coarse-tofine minimization. Experimental results using real images demonstrate the robustness and the usefulness of the proposed method.

[1]  David J. Fleet,et al.  Robustly Estimating Changes in Image Appearance , 2000, Comput. Vis. Image Underst..

[2]  Itsuo Kumazawa,et al.  Estimation of camera parameters and compensation of image distortion by matching a priori known shape , 2002 .

[3]  William H. Press,et al.  Numerical recipes in C , 2002 .

[4]  Paul R. Cohen,et al.  Camera Calibration with Distortion Models and Accuracy Evaluation , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Harpreet S. Sawhney,et al.  Compact Representations of Videos Through Dominant and Multiple Motion Estimation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  V. Pisarevsky,et al.  Intel's Computer Vision Library: applications in calibration, stereo segmentation, tracking, gesture, face and object recognition , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[7]  R. Y. Tsai,et al.  An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision , 1986, CVPR 1986.

[8]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Gideon P. Stein,et al.  Lens distortion calibration using point correspondences , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Kenneth Turkowski,et al.  Creating image-based VR using a self-calibrating fisheye lens , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  George Pedrick A first course in analysis , 1994 .

[12]  Reinhard Klette,et al.  Computer vision - three-dimensional data from images , 1998 .

[13]  Richard Szeliski,et al.  Systems and Experiment Paper: Construction of Panoramic Image Mosaics with Global and Local Alignment , 2000, International Journal of Computer Vision.

[14]  S. Berberian A first course in real analysis , 1994 .

[15]  Noboru Ohnishi,et al.  The recovery of object shape and camera motion using a sensing system with a video camera and a gyro sensor , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[16]  Larry S. Davis,et al.  3-D model-based tracking of humans in action: a multi-view approach , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Janne Heikkilä,et al.  Geometric Camera Calibration Using Circular Control Points , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Noboru Ohnishi,et al.  A method for compensation of image distortion with image registration technique , 2001 .

[19]  Kenichi Kanatani,et al.  Optimal Grid Pattern for Automated Camera Calibration Using Cross Ratio , 2000 .

[20]  C. A. HART,et al.  Manual of Photogrammetry , 1947, Nature.

[21]  Rangachar Kasturi,et al.  Machine vision , 1995 .

[22]  S. P. Mudur,et al.  Three-dimensional computer vision: a geometric viewpoint , 1993 .

[23]  David J. Kriegman,et al.  What Is the Set of Images of an Object Under All Possible Illumination Conditions? , 1998, International Journal of Computer Vision.

[24]  Roger Y. Tsai,et al.  Techniques for Calibration of the Scale Factor and Image Center for High Accuracy 3-D Machine Vision Metrology , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Harpreet S. Sawhney,et al.  True multi-image alignment and its application to mosaicing and lens distortion correction , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[26]  Richard Szeliski,et al.  Video mosaics for virtual environments , 1996, IEEE Computer Graphics and Applications.