Input-to-state stability of infinite-dimensional control systems

We develop tools for investigation of input-to-state stability (ISS) of infinite-dimensional control systems. We show that for certain classes of admissible inputs, the existence of an ISS-Lyapunov function implies the ISS of a system. Then for the case of systems described by abstract equations in Banach spaces, we develop two methods of construction of local and global ISS-Lyapunov functions. We prove a linearization principle that allows a construction of a local ISS-Lyapunov function for a system, the linear approximation of which is ISS. In order to study the interconnections of nonlinear infinite-dimensional systems, we generalize the small-gain theorem to the case of infinite-dimensional systems and provide a way to construct an ISS-Lyapunov function for an entire interconnection, if ISS-Lyapunov functions for subsystems are known and the small-gain condition is satisfied. We illustrate the theory on examples of linear and semilinear reaction-diffusion equations.

[1]  Iasson Karafyllis Lyapunov Theorems for Systems Described by Retarded Functional Differential Equations , 2005, CDC 2005.

[2]  Zhong-Ping Jiang,et al.  Small-gain theorem for ISS systems and applications , 1994, Math. Control. Signals Syst..

[3]  R. G. Cooke Functional Analysis and Semi-Groups , 1949, Nature.

[4]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[5]  Debasish Chatterjee,et al.  Input-to-state stability of switched systems and switching adaptive control , 2007, Autom..

[6]  Leo F. Boron,et al.  Positive solutions of operator equations , 1964 .

[7]  Jan C. Willems,et al.  Dissipative Dynamical Systems , 2007, Eur. J. Control.

[8]  A. Haraux,et al.  An Introduction to Semilinear Evolution Equations , 1999 .

[9]  Stefano Stramigioli,et al.  Modeling and Control of Complex Physical Systems - The Port-Hamiltonian Approach , 2014 .

[10]  Zhong-Ping Jiang,et al.  A nonlinear small-gain theorem for large-scale time delay systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[11]  Fabian R. Wirth,et al.  An ISS small gain theorem for general networks , 2007, Math. Control. Signals Syst..

[12]  A. Samoilenko,et al.  Impulsive differential equations , 1995 .

[13]  Ivanka M. Stamova,et al.  Stability Analysis of Impulsive Functional Differential Equations , 2009 .

[14]  Dragan Nesic,et al.  A Lyapunov-based small-gain theorem for hybrid ISS systems , 2008, 2008 47th IEEE Conference on Decision and Control.

[15]  I. Karafyllis,et al.  Lyapunov Theorems for Systems Described by Retarded Functional Differential Equations , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[16]  D. Bernstein Matrix Mathematics: Theory, Facts, and Formulas , 2009 .

[17]  Iasson Karafyllis,et al.  A system-theoretic framework for a wide class of systems II: Input-to-output stability , 2007 .

[18]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[19]  J. Willems Dissipative dynamical systems Part II: Linear systems with quadratic supply rates , 1972 .

[20]  Björn S. Rüffer Monotone inequalities, dynamical systems, and paths in the positive orthant of Euclidean n-space , 2010 .

[21]  V. Tikhomirov,et al.  Optimal Control , 1987 .

[22]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[23]  H. Logemann,et al.  The Circle Criterion and Input-to-State Stability , 2011, IEEE Control Systems.

[24]  Robert Shorten,et al.  Stability Criteria for Switched and Hybrid Systems , 2007, SIAM Rev..

[25]  Chaohong Cai,et al.  Characterizations of input-to-state stability for hybrid systems , 2009, Syst. Control. Lett..

[26]  Zhong-Ping Jiang,et al.  Input-to-state stability for discrete-time nonlinear systems , 1999 .

[27]  P. Pepe,et al.  A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems , 2006, Syst. Control. Lett..

[28]  Yuan Wang,et al.  Razumikhin-type small-gain theorems for large-scale systems with delays , 2010, 49th IEEE Conference on Decision and Control (CDC).

[29]  P. Olver Nonlinear Systems , 2013 .

[30]  A. Morse,et al.  Stability of switched systems with average dwell-time , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[31]  Carlos F. Daganzo,et al.  A theory of supply chains , 2003 .

[32]  Qiao Zhu,et al.  Converse Lyapunov Theorem of Input-to-State Stability for Time-delay Systems , 2010 .

[33]  F. Mazenc,et al.  Strict Lyapunov functions for semilinear parabolic partial differential equations , 2011 .

[34]  Daizhan Cheng,et al.  ON NONUNIFORM AND SEMI-UNIFORM INPUT-TO-STATE STABILITY FOR TIME VARYING SYSTEMS , 2005 .

[35]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[36]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[37]  J. Willems Paradigms and puzzles in the theory of dynamical systems , 1991 .

[38]  A. Teel Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem , 1998, IEEE Trans. Autom. Control..

[39]  Eduardo D. Sontag,et al.  Input to state stability and allied system properties , 2011 .

[40]  Sergey Dashkovskiy,et al.  On the uniform input-to-state stability of reaction-diffusion systems , 2010, 49th IEEE Conference on Decision and Control (CDC).

[41]  E. Davies,et al.  SEMIGROUPS OF LINEAR OPERATORS AND APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS: (Applied Mathematical Sciences, 44) , 1984 .

[42]  D. Angeli Intrinsic robustness of global asymptotic stability , 1999 .

[43]  Iasson Karafyllis,et al.  Nonuniform in time input-to-state stability and the small-gain theorem , 2004, IEEE Transactions on Automatic Control.

[44]  L. Grüne Asymptotic Behavior of Dynamical and Control Systems under Perturbation and Discretization , 2002 .

[45]  Christiaan Heij,et al.  Introduction to mathematical systems theory , 1997 .

[46]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[47]  Eduardo Sontag Input to State Stability: Basic Concepts and Results , 2008 .

[48]  Sergey Dashkovskiy,et al.  Local ISS of large-scale interconnections and estimates for stability regions , 2010, Syst. Control. Lett..

[49]  M. Hirsch Systems of di erential equations which are competitive or cooperative I: limit sets , 1982 .

[50]  Sergey Dashkovskiy,et al.  Modeling and stability analysis of autonomously controlled production networks , 2011, Logist. Res..

[51]  Björn S. Rüffer Monotone dynamical systems, graphs, and stability of large-scale interconnected systems , 2007 .

[52]  R. Weiner Lecture Notes in Economics and Mathematical Systems , 1985 .

[53]  S. B. Atienza-Samols,et al.  With Contributions by , 1978 .

[54]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[55]  Bao Shi,et al.  Input‐to‐state stability for discrete‐time nonlinear impulsive systems with delays , 2013 .

[56]  Tosio Kato Perturbation theory for linear operators , 1966 .

[57]  Mykhaylo Kosmykov,et al.  Hybrid dynamics in large-scale logistics networks , 2012 .

[58]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[59]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[60]  P. S. Bauer Dissipative Dynamical Systems: I. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Eduardo Sontag,et al.  On characterizations of the input-to-state stability property , 1995 .

[62]  João Pedro Hespanha,et al.  Lyapunov conditions for input-to-state stability of impulsive systems , 2008, Autom..

[63]  Jerzy Zabczyk Mathematical Control Theory , 1992 .

[64]  A. Schaft L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences 218 , 1996 .

[65]  James D. Murray,et al.  Spatial models and biomedical applications , 2003 .

[66]  Zhong-Ping Jiang,et al.  A generalization of the nonlinear small-gain theorem for large-scale complex systems , 2008, 2008 7th World Congress on Intelligent Control and Automation.

[67]  Wolfgang Hahn,et al.  Stability of Motion , 1967 .

[68]  H. L. Burmeister,et al.  W. Hahn, Stability of Motion. (Die Grundlehren der mathematischen Wissenschaften, Band 138). XII + 446 S m. 63 Fig. Berlin/Heidelberg/New York 1967. Springer‐Verlag. Preis geb. DM 72,– , 1969 .

[69]  Zhong-Ping Jiang,et al.  New Results in Trajectory-Based Small-Gain with Application to the Stabilization of a Chemostat , 2010 .

[70]  Josip Pečarić,et al.  Inequalities Involving Functions and Their Integrals and Derivatives , 1991 .

[71]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[72]  Randy A. Freeman,et al.  Stability of Nonlinear Feedback Systems: A New Small-Gain Theorem , 2007, SIAM J. Control. Optim..

[73]  S. Dashkovskiy,et al.  Dwell-time conditions for robust stability of impulsive systems , 2012, 1202.3351.

[74]  Sergey Dashkovskiy,et al.  Stability of networks of hybrid ISS systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[75]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[76]  Rafal Goebel,et al.  Solutions to hybrid inclusions via set and graphical convergence with stability theory applications , 2006, Autom..

[77]  Christian A. Ringhofer,et al.  Control of Continuum Models of Production Systems , 2010, IEEE Transactions on Automatic Control.

[78]  Wei Xing Zheng,et al.  Input-to-state stability and integral input-to-state stability of nonlinear impulsive systems with delays , 2009, Autom..

[79]  Chun Chor Litwin 鄭振初 Cheng,et al.  An extension of the results of hirsch on systems of differential equations which are competitive or cooperative , 1996 .

[80]  Zhong-Ping Jiang,et al.  A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems , 1996, Autom..

[81]  Iasson Karafyllis,et al.  Stability and Stabilization of Nonlinear Systems , 2011 .

[82]  Yuandan Lin,et al.  On input-to-state stability for time varying nonlinear systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[83]  J. Craggs Applied Mathematical Sciences , 1973 .

[84]  I. Karafyllis A system-theoretic framework for a wide class of systems I: Applications to numerical analysis , 2007 .

[85]  Eduardo Sontag,et al.  New characterizations of input-to-state stability , 1996, IEEE Trans. Autom. Control..

[86]  Frédéric Mazenc,et al.  ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws , 2012, Mathematics of Control, Signals, and Systems.

[87]  S. Dashkovskiy,et al.  Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods , 2010, 1011.2865.

[88]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[89]  Ricardo G. Sanfelice,et al.  Robust Stability and Control for Systems That Combine Continuous-time and Discrete-time Dynamics , 2009 .

[90]  Xinzhi Liu,et al.  Input-to-state stability of impulsive and switching hybrid systems with time-delay , 2011, Autom..

[91]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .

[92]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[93]  Xinzhi Liu,et al.  Existence, uniqueness and boundedness results for impulsive delay differential equations , 2000 .

[94]  Fabian R. Wirth,et al.  Small gain theorems for large scale systems and construction of ISS Lyapunov functions , 2009, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[95]  Lars Grüne,et al.  Input-to-state dynamical stability and its Lyapunov function characterization , 2002, IEEE Trans. Autom. Control..

[96]  David Angeli,et al.  A characterization of integral input-to-state stability , 2000, IEEE Trans. Autom. Control..

[97]  Serguei Dachkovski,et al.  Anisotropic function spaces and related semi–linear hypoelliptic equations , 2003 .

[98]  David Angeli,et al.  Monotone control systems , 2003, IEEE Trans. Autom. Control..

[99]  J. M. Ball,et al.  GEOMETRIC THEORY OF SEMILINEAR PARABOLIC EQUATIONS (Lecture Notes in Mathematics, 840) , 1982 .

[100]  Christian A. Ringhofer,et al.  A Model for the Dynamics of large Queuing Networks and Supply Chains , 2006, SIAM J. Appl. Math..

[101]  Eduardo Sontag,et al.  Monotone Chemical Reaction Networks , 2007 .