An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe

Nearly half of the earth's photosynthetically fixed carbon derives from the oceans. To determine global and re- gion specific rates, we rely on models that estimate marine net primary productivity (NPP) thus it is essential that these models are evaluated to determine their accuracy. Here we assessed the skill of 21 ocean color models by comparing their estimates of depth-integrated NPP to 1156 in situ 14 C measurements encompassing ten marine regions including the Sargasso Sea, pelagic North Atlantic, coastal Northeast

[1]  S. Levitus Climatological Atlas of the World Ocean , 1982 .

[2]  J. Yoder,et al.  Contribution of the Subtropical Oceans to Global Primary Production , 1997 .

[3]  K. Arrigo,et al.  Primary production in the Southern Ocean, 1997–2006 , 2008 .

[4]  Melin Frederic,et al.  Monitoring Phytoplankton Productivity from Satellite - An Aid to Marine Resources Management , 2010 .

[5]  W. Richard,et al.  TEMPERATURE AND PHYTOPLANKTON GROWTH IN THE SEA , 1972 .

[6]  川幡 穂高,et al.  Global climate change and response of carbon cycle in the equatorial Pacific and Indian oceans and adjacent landmasses , 2006 .

[7]  Rosalia Santoleri,et al.  Seasonal variability of the mixed layer depth in the Mediterranean Sea as derived from in situ profiles , 2005 .

[8]  Robert A. Armstrong,et al.  Optimality-based modeling of nitrogen allocation and photoacclimation in photosynthesis , 2006 .

[9]  H. Hurlburt,et al.  How Does Solar Attenuation Depth Affect the Ocean Mixed Layer? Water Turbidity and Atmospheric Forcing Impacts on the Simulation of Seasonal Mixed Layer Variability in the Turbid Black Sea* , 2005 .

[10]  Michele Scardi,et al.  Assessing the Uncertainties of Model Estimates of Primary Productivity in the Tropical Pacific Ocean Revised , 2008 .

[11]  Prieur,et al.  Analysis of variations in ocean color’ , 2000 .

[12]  Joji Ishizaka,et al.  Size-Fractionated Primary Production Estimated by a Two-Phytoplankton Community Model Applicable to Ocean Color Remote Sensing , 2005 .

[13]  Marcel Babin,et al.  Relating phytoplankton photophysiological properties to community structure on large scales , 2008 .

[14]  S. Doney A synoptic atmospheric surface forcing data set and physical upper ocean model for the U.S. JGOFS Bermuda Atlantic Time-Series Study site , 1996 .

[15]  Michael Ondrusek,et al.  A predictive model for estimating rates of primary production in the subtropical North Pacific Ocean , 2001 .

[16]  M. Dinniman,et al.  A model study of circulation and cross-shelf exchange on the west Antarctic Peninsula continental shelf , 2004 .

[17]  Michele Scardi,et al.  Advances in neural network modeling of phytoplankton primary production , 2001 .

[18]  M. R. Abbott,et al.  Estimating ocean primary production from satellite chlorophyll - Introduction to regional differences and statistics for the Southern California Bight , 1985 .

[19]  P. Falkowski,et al.  Photosynthetic rates derived from satellite‐based chlorophyll concentration , 1997 .

[20]  J. Kindle,et al.  Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment , 2009 .

[21]  C. Stow,et al.  Skill Assessment for Coupled Biological/Physical Models of Marine Systems. , 2009, Journal of marine systems : journal of the European Association of Marine Sciences and Techniques.

[22]  Francisco P Chavez,et al.  Bottom-up and climatic forcing on the worldwide population of leatherback turtles. , 2008, Ecology.

[23]  Janet W. Campbell,et al.  Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance , 2002 .

[24]  T. Smyth,et al.  Integration of radiative transfer into satellite models of ocean primary production , 2005 .

[25]  M. Abbott,et al.  Phytoplankton chlorophyll distibutions and primary production in the Southern Ocean , 2000 .

[26]  G. Danabasoglu,et al.  Mechanisms Governing Interannual Variability of Upper-Ocean Temperature in a Global Ocean Hindcast Simulation , 2007 .

[27]  M. Carr Estimation of potential productivity in Eastern Boundary Currents using remote sensing , 2001 .

[28]  W. White,et al.  ENSO and variability of the Antarctic Peninsula pelagic marine ecosystem , 2008, Antarctic Science.

[29]  L. Prieur,et al.  Analysis of variations in ocean color1 , 1977 .

[30]  M. Bowman,et al.  Lecture Notes on Coastal and Estuarine , 1983 .

[31]  Tao Zhang,et al.  Determination of ocean primary productivity using support vector machines , 2008 .

[32]  I. Asanuma Chapter 4 Depth and Time Resolved Primary Productivity Model Examined for Optical Properties of Water , 2007 .

[33]  S. Maritorena,et al.  Bio-optical properties of oceanic waters: A reappraisal , 2001 .

[34]  Michele Scardi,et al.  Challenges of modeling depth‐integrated marine primary productivity over multiple decades: A case study at BATS and HOT , 2010 .

[35]  David A. Siegel,et al.  Carbon‐based ocean productivity and phytoplankton physiology from space , 2005 .

[36]  F. Mélin Potentiel de la télédétection pour l'analyse des propriétés optiques du système océan-atmosphère et application à l'estimation de la photosynthèse phytoplanctonique , 2003 .

[37]  Katsuya Saitoh,et al.  Using multi-sensor satellite remote sensing and catch data to detect ocean hot spots for albacore (Thunnus alalunga) in the northwestern North Pacific , 2006 .

[38]  David A. Siegel,et al.  Climate-driven trends in contemporary ocean productivity , 2006, Nature.

[39]  John Marra,et al.  An Alternative Algorithm for the Calculation of Primary Productivity from Remote Sensing Data , 2003 .

[40]  David A. Siegel,et al.  Carbon‐based primary productivity modeling with vertically resolved photoacclimation , 2008 .

[41]  Patrick E. Van Laake,et al.  Estimation of absorbed PAR across Scandinavia from satellite measurements : Part I: Incident PAR , 2007 .

[42]  Michele Scardi,et al.  A comparison of global estimates of marine primary production from ocean color , 2006 .

[43]  H. Gordon,et al.  Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review , 1983 .

[44]  D. Antoine,et al.  Oceanic primary production: 1. Adaptation of a spectral light‐photosynthesis model in view of application to satellite chlorophyll observations , 1996 .