On the Microscopic Modeling of Vehicular Traffic on General Networks

We introduce a formalism to deal with the microscopic modeling of vehicular traffic on a road network. Traffic on each road is uni-directional, and the dynamics of each vehicle is described by a Follow-the-Leader model. From a mathematical point of view, this amounts to define a system of ordinary differential equations on an arbitrary network. A general existence and uniqueness result is provided, while priorities at junctions are shown to hinder the stability of solutions. We investigate the occurrence of the Braess paradox in a time-dependent setting within this model. The emergence of Nash equilibria in a non-stationary situation results in the appearance of Braess type paradoxes, and this is supported by numerical simulations.

[1]  Emiliano Cristiani,et al.  On the micro-to-macro limit for first-order traffic flow models on networks , 2016, Networks Heterog. Media.

[2]  Rinaldo M. Colombo,et al.  Hyperbolic Phase Transitions in Traffic Flow , 2003, SIAM J. Appl. Math..

[3]  Francesca Marcellini Existence of solutions to a boundary value problem for a phase transition traffic model , 2017, Networks Heterog. Media.

[4]  Axel Klar,et al.  Derivation of Continuum Traffic Flow Models from Microscopic Follow-the-Leader Models , 2002, SIAM J. Appl. Math..

[5]  Wei-Hua Lin,et al.  Investigating Braess' Paradox with Time-Dependent Queues , 2009, Transp. Sci..

[6]  Anna Nagurney,et al.  The Internet, evolutionary variational inequalities, and the time-dependent Braess paradox , 2007, Comput. Manag. Sci..

[7]  Michel Rascle,et al.  Resurrection of "Second Order" Models of Traffic Flow , 2000, SIAM J. Appl. Math..

[8]  Helge Holden,et al.  Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow , 2018, Networks Heterog. Media.

[9]  P. I. Richards Shock Waves on the Highway , 1956 .

[10]  Dietrich Braess,et al.  Über ein Paradoxon aus der Verkehrsplanung , 1968, Unternehmensforschung.

[11]  M J Lighthill,et al.  On kinematic waves II. A theory of traffic flow on long crowded roads , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[12]  Tim Roughgarden,et al.  Selfish routing and the price of anarchy , 2005 .

[13]  Alexandre M. Bayen,et al.  A General Phase Transition Model for Vehicular Traffic , 2011, SIAM J. Appl. Math..

[14]  M. Rosini,et al.  Rigorous Derivation of Nonlinear Scalar Conservation Laws from Follow-the-Leader Type Models via Many Particle Limit , 2014, 1404.7062.

[15]  Rinaldo M. Colombo,et al.  On the Braess Paradox with Nonlinear Dynamics and Control Theory , 2017, J. Optim. Theory Appl..

[16]  R. Colombo,et al.  A mixed ODE–PDE model for vehicular traffic , 2014, 1402.5097.

[17]  Mauro Garavello,et al.  Models for vehicular traffic on networks , 2016 .

[18]  R. Colombo,et al.  A CLASS OF NONLOCAL MODELS FOR PEDESTRIAN TRAFFIC , 2011, 1104.2985.

[19]  D. Gazis,et al.  Nonlinear Follow-the-Leader Models of Traffic Flow , 1961 .

[20]  B. Piccoli,et al.  COUPLING OF MICROSCOPIC AND MACROSCOPIC TRAFFIC MODELS AT BOUNDARIES , 2010 .

[21]  Anna Nagurney,et al.  Preface to "On a Paradox of Traffic Planning" , 2005, Transp. Sci..

[22]  M J Lighthill,et al.  ON KINEMATIC WAVES.. , 1955 .

[23]  Mike Nicholls,et al.  On the internet , 2004, Biological Psychiatry.

[24]  H. Holden,et al.  A mathematical model of traffic flow on a network of unidirectional roads , 1995 .

[25]  Walter Knödel,et al.  Graphentheoretische Methoden und ihre Anwendungen , 1969 .

[26]  Helge Holden,et al.  The continuum limit of Follow-the-Leader models - a short proof , 2017 .

[27]  Rinaldo M. Colombo,et al.  A 2-Phase Traffic Model Based on a Speed Bound , 2010, SIAM J. Appl. Math..

[28]  Rinaldo M. Colombo,et al.  A traffic model aware of real time data , 2014, 1411.2251.

[29]  Ke Han,et al.  Optima and Equilibria for a Model of Traffic Flow , 2011, SIAM J. Math. Anal..

[30]  A. Bressan,et al.  Nash equilibria for a model of traffic flow with several groups of drivers , 2012 .

[31]  Anna Nagurney,et al.  On a Paradox of Traffic Planning , 2005, Transp. Sci..

[32]  Emiliano Cristiani,et al.  Comparing comparisons between vehicular traffic states in microscopic and macroscopic first-order models , 2018, Mathematical Methods in the Applied Sciences.

[33]  Andreas Schadschneider,et al.  Braess paradox in a network with stochastic dynamics and fixed strategies , 2018, Physica A: Statistical Mechanics and its Applications.

[34]  Paola Goatin,et al.  The Aw-Rascle vehicular traffic flow model with phase transitions , 2006, Math. Comput. Model..