Detecting itinerant single microwave photons

Single-photon detectors are fundamental tools of investigation in quantum optics and play a central role in measurement theory and quantum informatics. Photodetectors based on different technologies exist at optical frequencies and much effort is currently being spent on pushing their efficiencies to meet the demands coming from the quantum computing and quantum communication proposals. In the microwave regime, however, a single-photon detector has remained elusive, although several theoretical proposals have been put forth. In this article, we review these recent proposals, especially focusing on non-destructive detectors of propagating microwave photons. These detection schemes using superconducting artificial atoms can reach detection efficiencies of 90% with the existing technologies and are ripe for experimental investigations. (C) 2016 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

[1]  Melvin Lax,et al.  Quantum Noise. IV. Quantum Theory of Noise Sources , 1966 .

[2]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[3]  John M. Martinis,et al.  Catching Time-Reversed Microwave Coherent State Photons with 99.4% Absorption Efficiency , 2013, 1311.1180.

[4]  Thomas M Stace,et al.  Quantum nondemolition detection of a propagating microwave photon. , 2013, Physical review letters.

[5]  G J Milburn,et al.  Mesoscopic one-way channels for quantum state transfer via the quantum Hall effect. , 2004, Physical review letters.

[6]  M. Mariantoni,et al.  On-Chip Microwave Fock States and Quantum Homodyne Measurements , 2005, cond-mat/0509737.

[7]  E. Solano,et al.  Photodetection of propagating quantum microwaves in circuit QED , 2009, 0906.4362.

[8]  Deanna C. Pineau,et al.  Theory of Josephson Photomultipliers: Optimal Working Conditions and Back Action , 2012, 1206.0360.

[9]  J J García-Ripoll,et al.  Microwave photon detector in circuit QED. , 2008, Physical review letters.

[10]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[11]  K. Thorne,et al.  Quantum Nondemolition Measurements , 1980, Science.

[12]  A N Cleland,et al.  Measurement of the decay of Fock states in a superconducting quantum circuit. , 2008, Physical review letters.

[13]  V. Braginskii,et al.  Quantum singularities of a ponderomotive meter of electromagnetic energy , 1977 .

[14]  Philippe Grangier,et al.  Quantum non-demolition measurements in optics , 1998, Nature.

[15]  K. Koshino,et al.  Dressed-state engineering for continuous detection of itinerant microwave photons , 2015, 1509.05858.

[16]  W. Unruh QUANTUM NONDEMOLITION AND GRAVITY WAVE DETECTION , 1979 .

[17]  R. J. Schoelkopf,et al.  Resolving photon number states in a superconducting circuit , 2007, Nature.

[18]  K. Koshino,et al.  Theory of microwave single-photon detection using an impedance-matched Λ system , 2015, 1501.03881.

[19]  V. Braginskii,et al.  Quantum-mechanical limitations in macroscopic experiments and modern experimental technique , 1975 .

[20]  A. Zeilinger,et al.  Bell violation using entangled photons without the fair-sampling assumption , 2012, Nature.

[21]  V. Sandberg,et al.  Quantum nondemolition measurements of harmonic oscillators , 1978 .

[22]  Erik Lucero,et al.  Catch and release of microwave photon states. , 2012, Physical review letters.

[23]  A. Einstein Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt [AdP 17, 132 (1905)] , 2005, Annalen der Physik.

[24]  Yasunobu Nakamura,et al.  Single microwave-photon detector using an artificial Λ-type three-level system , 2016, Nature Communications.

[25]  Alexander N. Korotkov,et al.  Entanglement of solid-state qubits by measurement , 2003 .

[26]  R. J. Schoelkopf,et al.  Reconfigurable Josephson Circulator/Directional Amplifier , 2015, 1503.00209.

[27]  Hans-J. Briegel,et al.  Computational model underlying the one-way quantum computer , 2002, Quantum Inf. Comput..

[28]  S. Girvin,et al.  Quantum non-demolition detection of single microwave photons in a circuit , 2010, 1003.2734.

[29]  S T Merkel,et al.  Microwave photon counter based on Josephson junctions. , 2010, Physical review letters.

[30]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[31]  S. Deleglise,et al.  Progressive field-state collapse and quantum non-demolition photon counting , 2007, Nature.

[32]  Jens Koch,et al.  Time-reversal-symmetry breaking in circuit-QED-based photon lattices , 2010, 1006.0762.

[33]  J Fan,et al.  Invited review article: Single-photon sources and detectors. , 2011, The Review of scientific instruments.

[34]  R. McDermott,et al.  High-fidelity qubit measurement with a microwave-photon counter , 2014, 1502.01564.

[35]  J. Raimond,et al.  Seeing a single photon without destroying it , 1999, Nature.

[36]  Io-Chun Hoi,et al.  Giant cross-Kerr effect for propagating microwaves induced by an artificial atom. , 2012, Physical review letters.

[37]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[38]  E. Solano,et al.  Approaching perfect microwave photodetection in circuit QED , 2010, 1101.0016.

[39]  Hendra Ishwara Nurdin,et al.  Quantum filtering for systems driven by fields in single-photon states or superposition of coherent states , 2012 .

[40]  R. McDermott,et al.  Quantum efficiency of a microwave photon detector based on a current-biased Josephson junction , 2012, 1201.2990.

[41]  L. Tornberg,et al.  Proposal for generating and detecting multi-qubit GHZ states in circuit QED , 2009, 0902.0324.

[42]  M. R. James,et al.  Quantum Feedback Networks: Hamiltonian Formulation , 2008, 0804.3442.

[43]  Canada,et al.  Schemes for the observation of photon correlation functions in circuit QED with linear detectors , 2010, 1004.3987.

[44]  Vladimir B. Braginsky,et al.  Quantum Nondemolition Measurements , 1980, Science.

[45]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[46]  M. Curty,et al.  Secure quantum key distribution , 2014, Nature Photonics.

[47]  B. Huard,et al.  Superconducting quantum node for entanglement and storage of microwave radiation. , 2014, Physical review letters.

[48]  G J Milburn,et al.  Breakdown of the cross-Kerr scheme for photon counting. , 2012, Physical review letters.

[49]  Alexandre Blais,et al.  On-chip superconducting microwave circulator from synthetic rotation , 2015, 1502.06041.

[50]  A. Einstein Concerning an heuristic point of view toward the emission and transformation of light , 1905 .

[51]  H. Carmichael An open systems approach to quantum optics , 1993 .

[52]  A. C. Doherty,et al.  On-Chip Microwave Quantum Hall Circulator , 2016, 1601.00634.

[53]  Matthew R. James,et al.  The Series Product and Its Application to Quantum Feedforward and Feedback Networks , 2007, IEEE Transactions on Automatic Control.

[54]  Thomas M. Stace,et al.  Nonabsorbing high-efficiency counter for itinerant microwave photons , 2014, 1403.4465.

[55]  R. Collins,et al.  Single-photon generation and detection , 2009 .