Tensor Method for Optimal Control Problems Constrained by Fractional 3D Elliptic Operator with Variable Coefficients

We introduce the tensor numerical method for solving optimal control problems that are constrained by fractional 2D and 3D elliptic operators with variable coefficients. We solve the governing equation for the control function which includes a sum of the fractional operator and its inverse, both discretized over large 3D $n\times n \times n$ spacial grids. Using the diagonalization of the arising matrix valued functions in the eigenbasis of the 1D Sturm-Liouville operators, we construct the rank-structured tensor approximation with controllable precision for the discretized fractional elliptic operators and the respective preconditioner. The right-hand side in the constraining equation (the optimal design function) is supposed to be represented in a form of a low-rank canonical tensor. Then the equation for the control function is solved in a tensor structured format by using preconditioned CG iteration with the adaptive rank truncation procedure that also ensures the accuracy of calculations, given an $\varepsilon$-threshold. This method reduces the numerical cost for solving the control problem to $O(n \log n)$ (plus the quadratic term $O(n^2)$ with a small weight), which is superior to the approaches based on the traditional linear algebra tools that yield at least $O(n^3 \log n)$ complexity in the 3D case. The storage for the representation of all 3D nonlocal operators and functions involved is also estimated by $O(n \log n)$. This essentially outperforms the traditional methods operating with fully populated $n^3 \times n^3$ matrices and vectors in $\mathbb{R}^{n^3}$. Numerical tests for 2D/3D control problems indicate the almost linear complexity scaling of the rank truncated PCG iteration in the univariate grid size $n$.

[1]  Riccardo Messina,et al.  Heat superdiffusion in plasmonic nanostructure networks. , 2013, Physical review letters.

[2]  Andrzej Cichocki,et al.  Adaptive Blind Signal and Image Processing - Learning Algorithms and Applications , 2002 .

[3]  B. Khoromskij,et al.  Low rank Tucker-type tensor approximation to classical potentials , 2007 .

[4]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[5]  Juan Carlos De Los Reyes,et al.  Numerical PDE-Constrained Optimization , 2015 .

[6]  Boris N. Khoromskij,et al.  Tensor-Structured Preconditioners and Approximate Inverse of Elliptic Operators in ℝd , 2009 .

[7]  Martin Stoll,et al.  Fast tensor product solvers for optimization problems with fractional differential equations as constraints , 2016, Appl. Math. Comput..

[8]  Ivan V. Oseledets,et al.  Solution of Linear Systems and Matrix Inversion in the TT-Format , 2012, SIAM J. Sci. Comput..

[9]  D. M. Hutton,et al.  Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation , 2010 .

[10]  D. Zorica,et al.  Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes , 2014 .

[11]  N. Higham Functions Of Matrices , 2008 .

[12]  B. Khoromskij Structured Rank-(r1, . . . , rd) Decomposition of Function-related Tensors in R_D , 2006 .

[13]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[14]  Michael Karkulik,et al.  H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathscr{H}}$\end{document}-matrix approximability of inverses of dis , 2018, Advances in Computational Mathematics.

[15]  Boris N. Khoromskij,et al.  Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part II. HKT Representation of Certain Operators , 2005, Computing.

[16]  Yavor Vutov,et al.  Optimal solvers for linear systems with fractional powers of sparse SPD matrices , 2016, Numer. Linear Algebra Appl..

[17]  W. Hackbusch,et al.  Hierarchical Matrices: Algorithms and Analysis , 2015 .

[18]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[19]  Xinfu Chen,et al.  ON SOME NONLOCAL EVOLUTION EQUATIONS ARISING IN MATERIALS SCIENCE , 2008 .

[20]  Alfio Borzì,et al.  Multigrid Methods for PDE Optimization , 2009, SIAM Rev..

[21]  Alfio Borzì,et al.  Computational Optimization of Systems Governed by Partial Differential Equations , 2012, Computational science and engineering.

[22]  M. Kwasnicki,et al.  Ten equivalent definitions of the fractional laplace operator , 2015, 1507.07356.

[23]  Boris N. Khoromskij,et al.  Tensor Numerical Methods in Scientific Computing , 2018 .

[24]  F. Stenger Numerical Methods Based on Sinc and Analytic Functions , 1993 .

[25]  R. Herzog,et al.  Algorithms for PDE‐constrained optimization , 2010 .

[26]  Wei Cai,et al.  What Is the Fractional Laplacian , 2018, 1801.09767.

[27]  Joseph E. Pasciak,et al.  Numerical approximation of fractional powers of elliptic operators , 2013, Math. Comput..

[28]  Daniel Kressner,et al.  Krylov Subspace Methods for Linear Systems with Tensor Product Structure , 2010, SIAM J. Matrix Anal. Appl..

[29]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[31]  Boris N. Khoromskij,et al.  Tensor product method for fast solution of optimal control problems with fractional multidimensional Laplacian in constraints , 2021, J. Comput. Phys..

[32]  B. Khoromskij,et al.  Tensor approach to optimal control problems with fractional d-dimensional elliptic operator in constraints , 2018, 1809.01971.

[33]  Harbir Antil,et al.  A FEM for an Optimal Control Problem of Fractional Powers of Elliptic Operators , 2014, SIAM J. Control. Optim..

[34]  Boris N. Khoromskij,et al.  Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part I. Separable Approximation of Multi-variate Functions , 2005, Computing.

[35]  F. L. Hitchcock The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .

[36]  Petr N. Vabishchevich Numerically solving an equation for fractional powers of elliptic operators , 2015, J. Comput. Phys..

[37]  Nicholas J. Higham,et al.  Computing AAlpha, log(A), and Related Matrix Functions by Contour Integrals , 2008, SIAM J. Numer. Anal..

[38]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[39]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[40]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[41]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[42]  Daniel Kressner,et al.  Preconditioned Low-Rank Methods for High-Dimensional Elliptic PDE Eigenvalue Problems , 2011, Comput. Methods Appl. Math..

[43]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[44]  Boris N. Khoromskij,et al.  Tensor Numerical Methods in Quantum Chemistry , 2018 .

[45]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.