A Central Role for P48/45 in Malaria Parasite Male Gamete Fertility

[1]  Larry W. Moreland,et al.  Enzyme-linked immunosorbent assay , 2017 .

[2]  A. Cowman,et al.  Targeted disruption of an erythrocyte binding antigen in Plasmodium falciparum is associated with a switch toward a sialic acid-independent pathway of invasion. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[3]  R. Ménard The journey of the malaria sporozoite through its hosts: two parasite proteins lead the way. , 2000, Microbes and infection.

[4]  K. Mendis,et al.  Malaria transmission-blocking vaccines—how can their development be supported? , 2000, Nature Medicine.

[5]  K. Williamson,et al.  Proteolysis of Plasmodium falciparum surface antigen, Pfs230, during gametogenesis. , 2000, Molecular and biochemical parasitology.

[6]  R. Sinden,et al.  CTRP is essential for mosquito infection by malaria ookinetes , 1999, The EMBO journal.

[7]  A. Crisanti,et al.  The A‐domain and the thrombospondin‐related motif of Plasmodium falciparum TRAP are implicated in the invasion process of mosquito salivary glands , 1999, The EMBO journal.

[8]  D. Kaslow,et al.  Identification of additional members define a Plasmodium falciparum gene superfamily which includes Pfs48/45 and Pfs230. , 1999, Molecular and biochemical parasitology.

[9]  M. Aikawa,et al.  Disruption of the Pfg27 locus by homologous recombination leads to loss of the sexual phenotype in P. falciparum. , 1999, Molecular cell.

[10]  J. Verhave,et al.  Plasmodium falciparum: membrane feeding assays and competition ELISAs for the measurement of transmission reduction in sera from Cameroon. , 1999, Experimental parasitology.

[11]  T. Theander,et al.  Detection of antibodies to variant antigens on Plasmodium falciparum-infected erythrocytes by flow cytometry. , 1999, Cytometry.

[12]  M. Wahlgren,et al.  Waves of Malarial var-iations , 1999, Cell.

[13]  M. Galinski,et al.  Antigenic variation in malaria: a 3' genomic alteration associated with the expression of a P. knowlesi variant antigen. , 1999, Molecular cell.

[14]  E V Koonin,et al.  Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. , 1998, Science.

[15]  V. Vacquier Evolution of gamete recognition proteins. , 1998, Science.

[16]  R. Konings,et al.  Immunological properties of recombinant proteins of the transmission blocking vaccine candidate, Pfs48/45, of the human malaria parasite Plasmodium falciparum produced in Escherichia coli , 1998, Parasite immunology.

[17]  D. Kaslow,et al.  Adherence of Erythrocytes during Exflagellation of Plasmodium falciparum Microgametes Is Dependent on Erythrocyte Surface Sialic Acid and Glycophorins , 1998, The Journal of experimental medicine.

[18]  R. Sinden,et al.  Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito , 1998, Nature.

[19]  R. Ménard,et al.  Gene targeting in malaria parasites. , 1997, Methods.

[20]  D. Fidock,et al.  Transformation with human dihydrofolate reductase renders malaria parasites insensitive to WR99210 but does not affect the intrinsic activity of proguanil. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[21]  D. Kaslow,et al.  A novel malaria protein, Pfs28, and Pfs25 are genetically linked and synergistic as falciparum malaria transmission-blocking vaccines , 1997, Infection and immunity.

[22]  A. Vaidya,et al.  A developmental defect in Plasmodium falciparum male gametogenesis , 1996, The Journal of cell biology.

[23]  C. Birago,et al.  A chromatin-associated protein is encoded in a genomic region highly conserved in the Plasmodium genus. , 1996, Molecular and biochemical parasitology.

[24]  T. Wellems,et al.  Transformation of Plasmodium falciparum malaria parasites by homologous integration of plasmids that confer resistance to pyrimethamine. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. Bolmer,et al.  Association between anti‐Pfs48/45 reactivity and P. falciparum transmission‐blocking activity in sera from Cameroon , 1996, Parasite immunology.

[26]  P. Borst,et al.  Antigenic variation in malaria , 1995, Cell.

[27]  C. Atkinson,et al.  Induction of Plasmodium falciparum sporozoite-neutralizing antibodies upon vaccination with recombinant Pfs16 vaccinia virus and/or recombinant Pfs16 protein produced in yeast. , 1995, Molecular and biochemical parasitology.

[28]  R. Carter,et al.  Predicted disulfide-bonded structures for three uniquely related proteins of Plasmodium falciparum, Pfs230, Pfs48/45 and Pf12. , 1995, Molecular and biochemical parasitology.

[29]  C. Janse,et al.  Plasmodium berghei: the application of cultivation and purification techniques to molecular studies of malaria parasites. , 1995, Parasitology today.

[30]  S. Hoffman,et al.  Malaria vaccine development , 1994, Clinical Microbiology Reviews.

[31]  R. Konings,et al.  Cloning and expression of the gene coding for the transmission blocking target antigen Pfs48/45 of Plasmodium falciparum. , 1993, Molecular and biochemical parasitology.

[32]  M. Smits,et al.  The γ-tubulin gene of the malaria parasite Plasmodium falciparum , 1993 .

[33]  P. Ambroise‐Thomas,et al.  High human malarial infectivity to laboratory-bred Anopheles gambiae in a village in Burkina Faso. , 1993, The American journal of tropical medicine and hygiene.

[34]  K. Williamson,et al.  Cloning and expression of the gene for Plasmodium falciparum transmission-blocking target antigen, Pfs230. , 1993, Molecular and biochemical parasitology.

[35]  D. Battistutta,et al.  Human antibody responses to epitopes on the Plasmodium falciparum gametocyte antigen PFS 48/45 and their relationship to infectivity of gametocyte carriers. , 1992, The American journal of tropical medicine and hygiene.

[36]  R. Carter,et al.  Properties of epitopes of Pfs 48/45, a target of transmission blocking monoclonal antibodies, on gametes of different isolates of Plasmodium falciparum , 1990, Parasite immunology.

[37]  G. Targett,et al.  Plasmodium falciparum sexual stage antigens: immunogenicity and cell-mediated responses. , 1990, Immunology letters.

[38]  T. Wellems,et al.  Evidence for a switching mechanism in the invasion of erythrocytes by Plasmodium falciparum. , 1990, The Journal of clinical investigation.

[39]  J. Minjas,et al.  Genes for Plasmodium falciparum surface antigens cloned by expression in COS cells. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[40]  C. Janse,et al.  Plasmodium berghei: gametocyte production, DNA content, and chromosome-size polymorphisms during asexual multiplication in vivo. , 1989, Experimental parasitology.

[41]  J. Coligan,et al.  A vaccine candidate from the sexual stage of human malaria that contains EGF-like domains , 1988, Nature.

[42]  Nirbhay Kumar Target antigens of malaria transmission blocking immunity exist as a stable membrane bound complex , 1987, Parasite immunology.

[43]  M. van der Ploeg,et al.  DNA synthesis in Plasmodium berghei during asexual and sexual development. , 1986, Molecular and biochemical parasitology.

[44]  R. Brakenhoff,et al.  Characterization of Plasmodium falciparum sexual stage antigens and their biosynthesis in synchronised gametocyte cultures. , 1986, Molecular and biochemical parasitology.

[45]  M. Smits,et al.  Sequential expression of antigens on sexual stages of Plasmodium falciparum accessible to transmission-blocking antibodies in the mosquito , 1985, The Journal of experimental medicine.

[46]  C. Janse,et al.  Development of Plasmodium berghei ookinetes in the midgut of Anopheles atroparvus mosquitoes and in vitro , 1985, Parasitology.

[47]  C. Janse,et al.  In vitro formation of ookinetes and functional maturity of Plasmodium berghei gametocytes , 1985, Parasitology.

[48]  S. Gupta,et al.  Stage-dependent toxicity of N-acetyl-glucosamine to Plasmodium falciparum. , 1985, The Journal of protozoology.

[49]  R. Carter,et al.  Characterization of antigens on mosquito midgut stages of Plasmodium gallinaceum. II. Comparison of surface antigens of male and female gametes and zygotes. , 1984, Molecular and biochemical parasitology.

[50]  D. Kaslow Transmission-blocking vaccines. , 2002, Chemical immunology.

[51]  J. Meuwissen,et al.  A comparison of transmission-blocking activity with reactivity in a Plasmodium falciparum 48/45-kD molecule-specific competition enzyme-linked immunosorbent assay. , 1995, The American journal of tropical medicine and hygiene.

[52]  A. Vaidya,et al.  A genetic locus on Plasmodium falciparum chromosome 12 linked to a defect in mosquito-infectivity and male gametogenesis. , 1995, Molecular and biochemical parasitology.

[53]  J. Schwartzman,et al.  Toxoplasma gondii: characterization of monoclonal antibodies that recognize rhoptries. , 1989, Experimental parasitology.

[54]  Melissa K. Jones,et al.  What is a vaccine , 1948 .