Software Packages for Bayesian Multilevel Modeling

Multilevel modeling is a statistical approach to analyze hierarchical data that consist of individual observations nested within clusters. Bayesian method is a well-known, sometimes better, alternative of Maximum likelihood method for fitting multilevel models. Lack of user friendly and computationally efficient software packages or programs was a main obstacle in applying Bayesian multilevel modeling. In recent years, the development of software packages for multilevel modeling with improved Bayesian algorithms and faster speed has been growing. This article aims to update the knowledge of software packages for Bayesian multilevel modeling and therefore to promote the use of these packages. Three categories of software packages capable of Bayesian multilevel modeling including brms, MCMCglmm, glmmBUGS, Bambi, R2BayesX, BayesReg, R2MLwiN and others are introduced and compared in terms of computational efficiency, modeling capability and flexibility, as well as user-friendliness. Recommendations to practical users and suggestions for future development are also discussed.

[1]  Radford M. Neal Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .

[2]  Kesheng Wang Linear and Non-Linear Mixed Models in Longitudinal Studies and Complex Survey Data , 2016 .

[3]  Andrew Thomas,et al.  The BUGS project: Evolution, critique and future directions , 2009, Statistics in medicine.

[4]  Zhiyong Zhang,et al.  Modeling error distributions of growth curve models through Bayesian methods , 2015, Behavior Research Methods.

[5]  G. Andrew,et al.  arm: Data Analysis Using Regression and Multilevel/Hierarchical Models , 2014 .

[6]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[7]  George Leckie,et al.  R2MLwiN: A Package to Run MLwiN from within R , 2016 .

[8]  Andreas Brezger,et al.  Generalized structured additive regression based on Bayesian P-splines , 2006, Comput. Stat. Data Anal..

[9]  Kathryn Chaloner,et al.  Bayesian Experimental Design for Nonlinear Mixed‐Effects Models with Application to HIV Dynamics , 2004, Biometrics.

[10]  Charles C. Driver,et al.  Continuous time structural equation modeling with R package ctsem , 2017 .

[11]  Zhiyong Zhang,et al.  WebBUGS: Conducting Bayesian Statistical Analysis Online , 2014, Journal of Statistical Software.

[12]  Lifeng Lin,et al.  Performing Arm-Based Network Meta-Analysis in R with the pcnetmeta Package. , 2017, Journal of statistical software.

[13]  Yves Rosseel,et al.  lavaan: An R Package for Structural Equation Modeling , 2012 .

[14]  R. Philip Chalmers,et al.  mirt: A Multidimensional Item Response Theory Package for the R Environment , 2012 .

[15]  Andrew Gelman,et al.  R2WinBUGS: A Package for Running WinBUGS from R , 2005 .

[16]  M. G. Correia,et al.  DEVELOPING GRAPHICAL USER INTERFACE FOR BAYESIAN STATISTICS APPLIED TO MIXED TREATMENT COMPARISON ON R COMMANDER , 2016 .

[17]  H Goldstein,et al.  Multilevel time series models with applications to repeated measures data. , 1994, Statistics in medicine.

[18]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[19]  Jan de Leeuw,et al.  Introducing Multilevel Modeling , 1998 .

[20]  Craig K. Enders,et al.  Using the SPSS Mixed Procedure to Fit Cross-Sectional and Longitudinal Multilevel Models , 2005 .

[21]  Paul-Christian Bürkner,et al.  brms: An R Package for Bayesian Multilevel Models Using Stan , 2017 .

[22]  Yong Luo,et al.  Using the Stan Program for Bayesian Item Response Theory , 2018, Educational and psychological measurement.

[23]  Bob Carpenter,et al.  Fitting Bayesian item response models in Stata and Stan , 2016, 1601.03443.

[24]  Peter C Austin,et al.  Estimating Multilevel Logistic Regression Models When the Number of Clusters is Low: A Comparison of Different Statistical Software Procedures , 2010, The international journal of biostatistics.

[25]  Tal Yarkoni,et al.  Bambi: A simple interface for fitting Bayesian mixed effects models , 2016 .

[26]  H. Goldstein Multilevel Statistical Models , 2006 .

[27]  Emmanuel Lesaffre,et al.  Generalized linear mixed model with a penalized Gaussian mixture as a random effects distribution , 2008, Comput. Stat. Data Anal..

[28]  Patrick Brown,et al.  MCMC for Generalized Linear Mixed Models with glmmBUGS , 2010, R J..

[29]  Xun Pang,et al.  Modeling Heterogeneity and Serial Correlation in Binary Time-Series Cross-sectional Data: A Bayesian Multilevel Model with AR(p) Errors , 2010, Political Analysis.

[30]  Bengt Muthén,et al.  Bayesian Analysis Using Mplus: Technical Implementation , 2010 .

[31]  Daniela De Angelis,et al.  Massively parallel MCMC for Bayesian hierarchical models , 2017 .

[32]  Sumio Watanabe,et al.  Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory , 2010, J. Mach. Learn. Res..

[33]  Deborah Burr,et al.  bspmma: An R Package for Bayesian Semiparametric Models for Meta-Analysis , 2012 .

[34]  Walter R. Gilks,et al.  A Language and Program for Complex Bayesian Modelling , 1994 .

[35]  Virgilio Gómez-Rubio,et al.  Markov chain Monte Carlo with the Integrated Nested Laplace Approximation , 2017, Stat. Comput..

[36]  Andrew D. Martin,et al.  MCMCpack: Markov chain Monte Carlo in R , 2011 .

[37]  Rutger van Haasteren,et al.  Gibbs Sampling , 2010, Encyclopedia of Machine Learning.

[38]  Ke Sheng Wang,et al.  Linear and Non-Linear Mixed Models in Longitudinal Studies andComplex Survey Data , 2016 .

[39]  Bob Carpenter,et al.  Introducing the StataStan Interface for Fast, Complex Bayesian Modeling Using Stan , 2017 .

[40]  Reginald S. Lee,et al.  Multilevel Modeling: A Review of Methodological Issues and Applications , 2009 .

[41]  John R. Nesselroade,et al.  Bayesian analysis of longitudinal data using growth curve models , 2007 .

[42]  Achim Zeileis,et al.  Structured Additive Regression Models: An R Interface to BayesX , 2015 .

[43]  Radford M. Neal Slice Sampling , 2003, The Annals of Statistics.

[44]  S. Walker Invited comment on the paper "Slice Sampling" by Radford Neal , 2003 .

[45]  Henrik Holmberg,et al.  Generalized linear models with clustered data: Fixed and random effects models , 2011, Comput. Stat. Data Anal..

[46]  Brady T West,et al.  An Overview of Current Software Procedures for Fitting Linear Mixed Models , 2011, The American statistician.

[47]  Martyn Plummer,et al.  JAGS Version 3.3.0 user manual , 2012 .

[48]  Penny Whiting,et al.  Metandi: Meta-analysis of Diagnostic Accuracy Using Hierarchical Logistic Regression , 2009 .

[49]  Bengt Muthén,et al.  Bayesian Analysis Using Mplus , 2010 .

[50]  George Karabatsos,et al.  A menu-driven software package of Bayesian nonparametric (and parametric) mixed models for regression analysis and density estimation , 2015, Behavior Research Methods.

[51]  Jonathan Aguero-Valverde,et al.  Full Bayes Poisson gamma, Poisson lognormal, and zero inflated random effects models: Comparing the precision of crash frequency estimates. , 2013, Accident; analysis and prevention.

[52]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[53]  Haavard Rue,et al.  Bayesian Computing with INLA: A Review , 2016, 1604.00860.

[54]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[55]  Simon G Thompson,et al.  Flexible parametric models for random‐effects distributions , 2008, Statistics in medicine.

[56]  Jean-Noël Bacro,et al.  A Hierarchical Bayesian Model for Spatial Prediction of Multivariate Non‐Gaussian Random Fields , 2011, Biometrics.

[57]  Jean-Paul Fox,et al.  Multilevel IRT Modeling in Practice with the Package mlirt , 2007 .

[58]  Jarrod Had MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package , 2010 .

[59]  Karl G. Jöreskog,et al.  Lisrel 8: User's Reference Guide , 1997 .

[60]  Finn Lindgren,et al.  Bayesian Spatial Modelling with R-INLA , 2015 .

[61]  Christopher M J Charlton,et al.  runmlwin : A Program to Run the MLwiN Multilevel Modeling Software from within Stata , 2013 .

[62]  P. Austin A Tutorial on Multilevel Survival Analysis: Methods, Models and Applications , 2017, International statistical review = Revue internationale de statistique.

[63]  Peter Müller,et al.  DPpackage: Bayesian Semi- and Nonparametric Modeling in R , 2011 .

[64]  Virgilio G'omez-Rubio,et al.  Spatial Models with the Integrated Nested Laplace Approximation within Markov Chain Monte Carlo , 2017, 1702.03891.

[65]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[66]  N. G. Best,et al.  WinBUGS User Manual: Version 1.4 , 2001 .

[67]  B. Byrne Book Review: Structural Equation Modeling with EQS and EQS/Windows: Basic Concepts, Applications, and Programming , 1994 .

[68]  A B Lawson,et al.  Comparing INLA and OpenBUGS for hierarchical Poisson modeling in disease mapping. , 2015, Spatial and spatio-temporal epidemiology.

[69]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .