The logic of Peirce algebras

Peirce algebras combine sets, relations and various operations linking the two in a unifying setting. This paper offers a modal perspective on Peirce algebras. Using modal logic a characterization of the full Peirce algebras is given, as well as a finite axiomatization of their equational theory that uses so-called unorthodox derivation rules. In addition, the expressive power of Peirce algebras is analyzed through their connection with first-order logic, and the fragment of first-order logic corresponding to Peirce algebras is described in terms of bisimulations.

[1]  Willem P. de Roever,et al.  A Calculus for Recursive Program Schemes , 1972, ICALP.

[2]  J. P. Thorne Language in Action , 1968, Nature.

[3]  C. A. R. Hoare,et al.  The Weakest Prespecification , 1987, Information Processing Letters.

[4]  J.F.A.K. van Benthem,et al.  Modal Correspondence Theory , 1977 .

[5]  R. Maddux Some varieties containing relation algebras , 1982 .

[6]  M. de Rijke,et al.  Sahlqvist's theorem for boolean algebras with operators with an application to cylindric algebras , 1995, Stud Logica.

[7]  B. Jónsson Varieties of relation algebras , 1982 .

[8]  M. Hollenberg Hennessy-Milner Classes and Process Algebra , 1994 .

[9]  C. J. Everett,et al.  The Representation of Relational Algebras. , 1951 .

[10]  Yde Venema,et al.  Derivation rules as anti-axioms in modal logic , 1993, Journal of Symbolic Logic.

[11]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[12]  Yde Venema,et al.  Many-dimensional Modal Logic , 1991 .

[13]  Michael Böttner Variable-free semantics for anaphora , 1992, J. Philos. Log..

[14]  maarten marx Algebraic Relativization and Arrow Logic , 1995 .

[15]  Johan van Benthem,et al.  A note on dynamic arrow logic , 1994 .

[16]  M. de Rijke Correspondence theory for extended modal logics , 1993 .

[17]  M. de Rijke A modal characterization of Peirce algebras , 1995 .

[18]  Renate A. Schmidt,et al.  Terminological Representation, Natural Language & Relation Algebra , 1992, GWAI.

[19]  Maarten de Rijke,et al.  Counting Objects , 1995, J. Log. Comput..

[20]  Maarten de Rijke Modal model theory , 1995 .