Some applications of concentration inequalities to statistics

Nous presentons quelques applications d'inegalites de concentration a la resolution de problemes de selection de modeles en statistique. Nous etudions en detail deux exemples pour lesquels cette approche s'avere particulirement fructueuse. Nous considerons tout d'abord le classique mais delicat probleme du choix d'un bon histogramme. Nous presentons un extrait de travail de Castellan sur la question, mettant en evidence que la structure meme des inegalites de concentration de Talagrand pour des processus empiriques influence directement la construction d'un critere de selection de type Akaike modifie. Nous presentons egalement un nouveau theoreme de selection de modeles bien adapte a la resolution de problemes d'apprentissage. Ce resultat permet de reinterpreter et d'ameliorer la methode dite de minimisation structurelle du risque due a Vapnik.

[1]  R. R. Bahadur Examples of inconsistency of maximum likelihood estimates , 1958 .

[2]  G. Bennett Probability Inequalities for the Sum of Independent Random Variables , 1962 .

[3]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[4]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[5]  C. Borell The Brunn-Minkowski inequality in Gauss space , 1975 .

[6]  L. Gross LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .

[7]  V. Sudakov,et al.  Extremal properties of half-spaces for spherically invariant measures , 1978 .

[8]  Katalin Marton,et al.  A simple proof of the blowing-up lemma , 1986, IEEE Trans. Inf. Theory.

[9]  W. V. Zwet,et al.  A REFINEMENT OF THE KMT INEQUALITY FOR THE UNIFORM EMPIRICAL PROCESS , 1987 .

[10]  Thomas M. Cover,et al.  Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing) , 2006 .

[11]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[12]  A. Barron,et al.  APPROXIMATION OF DENSITY FUNCTIONS BY SEQUENCES OF EXPONENTIAL FAMILIES , 1991 .

[13]  P. Massart,et al.  Rates of convergence for minimum contrast estimators , 1993 .

[14]  A. Tsybakov,et al.  Minimax theory of image reconstruction , 1993 .

[15]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[16]  M. Talagrand Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.

[17]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[18]  M. Talagrand New concentration inequalities in product spaces , 1996 .

[19]  M. Ledoux,et al.  Isoperimetry and Gaussian analysis , 1996 .

[20]  P. Massart,et al.  From Model Selection to Adaptive Estimation , 1997 .

[21]  A. Dembo Information inequalities and concentration of measure , 1997 .

[22]  P. Massart,et al.  Minimum contrast estimators on sieves: exponential bounds and rates of convergence , 1998 .

[23]  P. Massart,et al.  Risk bounds for model selection via penalization , 1999 .

[24]  S. Boucheron,et al.  A sharp concentration inequality with applications , 1999, Random Struct. Algorithms.

[25]  Y. Baraud Model selection for regression on a fixed design , 2000 .

[26]  P. Massart,et al.  About the constants in Talagrand's concentration inequalities for empirical processes , 2000 .

[27]  S. Boucheron,et al.  A sharp concentration inequality with applications , 1999, Random Struct. Algorithms.

[28]  P. Massart,et al.  Gaussian model selection , 2001 .

[29]  Y. Baraud,et al.  MODEL SELECTION FOR (AUTO-)REGRESSION WITH DEPENDENT DATA , 2001 .